快速掌握:大型分布式系统中的缓存架构

本文涉及的产品
云数据库 Tair(兼容Redis),内存型 2GB
Redis 开源版,标准版 2GB
推荐场景:
搭建游戏排行榜
简介: 本文主要介绍大型分布式系统中缓存的相关理论,常见的缓存组件以及应用场景。

本文主要介绍大型分布式系统中缓存的相关理论,常见的缓存组件以及应用场景。

缓存概述

image

缓存概述

缓存的分类

缓存主要分为四类,如下图:

image

缓存的分类

CDN 缓存

CDN(Content Delivery Network 内容分发网络)的基本原理是广泛采用各种缓存服务器,将这些缓存服务器分布到用户访问相对集中的地区或网络中。

在用户访问网站时,利用全局负载技术将用户的访问指向距离最近的工作正常的缓存服务器上,由缓存服务器直接响应用户请求。

应用场景:主要缓存静态资源,例如图片,视频。

CDN 缓存应用如下图:

image


未使用 CDN 缓存


image

使用 CDN 缓存

CDN 缓存优点如下图:

image

优点

反向代理缓存

反向代理位于应用服务器机房,处理所有对 Web 服务器的请求。

如果用户请求的页面在代理服务器上有缓冲的话,代理服务器直接将缓冲内容发送给用户。

如果没有缓冲则先向 Web 服务器发出请求,取回数据,本地缓存后再发送给用户。通过降低向 Web 服务器的请求数,从而降低了 Web 服务器的负载。

应用场景:一般只缓存体积较小静态文件资源,如 css、js、图片。

反向代理缓存应用如下图:

image

反向代理缓存应用图

开源实现如下图:

image


开源实现

本地应用缓存

指的是在应用中的缓存组件,其最大的优点是应用和 Cache 是在同一个进程内部,请求缓存非常快速,没有过多的网络开销等。

在单应用不需要集群支持或者集群情况下各节点无需互相通知的场景下使用本地缓存较合适。

同时,它的缺点也是应为缓存跟应用程序耦合,多个应用程序无法直接的共享缓存,各应用或集群的各节点都需要维护自己的单独缓存,对内存是一种浪费。

应用场景:缓存字典等常用数据。

缓存介质如下图所示:

image

缓存介质

编程直接实现如下图:

image

编程直接实现

Ehcache

基本介绍:Ehcache 是一种基于标准的开源缓存,可提高性能,卸载数据库并简化可伸缩性。

它是使用最广泛的基于 Java 的缓存,因为它功能强大,经过验证,功能齐全,并与其他流行的库和框架集成。

Ehcache 可以从进程内缓存扩展到使用 TB 级缓存的混合进程内/进程外部署。

Ehcache 应用场景如下图:

image


Ehcache 应用场景

Ehcache 的架构如下图:

image

Ehcache 架构图

Ehcache 的主要特征如下图:

image



Ehcache 主要特征


Ehcache 缓存数据过期策略如下图:

image

缓存数据过期策略

Ehcache 过期数据淘汰机制:即懒淘汰机制,每次往缓存放入数据的时候,都会存一个时间,在读取的时候要和设置的时间做 TTL 比较来判断是否过期。
Guava Cache

基本介绍:Guava Cache 是 Google 开源的 Java 重用工具集库 Guava 里的一款缓存工具。

Guava Cache 特点与功能如下图:

image

Guava Cache 特点与功能

Guava Cache 的应用场景如下图:

image

Guava Cache 应用场景


Guava Cache 的数据结构如下图:

image

Guava Cache 数据结构图


image

Guava Cache 结构特点

Guava Cache 的缓存更新策略如下图:

image

Guava Cache 缓存更新策略

Guava Cache 的缓存回收策略如下图:

image


Guava Cache 缓存回收策略

分布式缓存

指的是与应用分离的缓存组件或服务,其最大的优点是自身就是一个独立的应用,与本地应用隔离,多个应用可直接的共享缓存。

分布式缓存的主要应用场景如下图:

image

分布式缓存应用场景


分布式缓存的主要接入方式如下图:

image

分布式缓存接入方式

下面介绍分布式缓存常见的 2 大开源实现 Memcached 和 Redis。

Memcached

Memcached 是一个高性能,分布式内存对象缓存系统,通过在内存里维护一个统一的巨大的 Hash 表,它能够用来存储各种格式的数据,包括图像、视频、文件以及数据库检索的结果等。

简单的说就是将数据调用到内存中,然后从内存中读取,从而大大提高读取速度。

Memcached 的特点如下图:

image

Memcached 特点

Memcached 的基本架构如下图:

image

Memcached 基本架构

缓存数据过期策略:LRU(最近最少使用)到期失效策略,在 Memcached 内存储数据项时,可以指定它在缓存的失效时间,默认为永久。

当 Memcached 服务器用完分配的内存时,失效的数据被首先替换,然后是最近未使用的数据。

数据淘汰内部实现:懒淘汰机制为每次往缓存放入数据的时候,都会存一个时间,在读取的时候要和设置的时间做 TTL 比较来判断是否过期。

分布式集群实现:服务端并没有 “ 分布式 ” 功能。每个服务器都是完全独立和隔离的服务。 Memcached 的分布式,是由客户端程序实现的。

image


数据读写流程图



image

Memcached 分布式集群实现

Redis

Redis 是一个远程内存数据库(非关系型数据库),性能强劲,具有复制特性以及解决问题而生的独一无二的数据模型。

它可以存储键值对与 5 种不同类型的值之间的映射,可以将存储在内存的键值对数据持久化到硬盘,可以使用复制特性来扩展读性能。

Redis 还可以使用客户端分片来扩展写性能,内置了 复制(replication),LUA 脚本(Lua scripting),LRU 驱动事件(LRU eviction),事务(transactions) 和不同级别的磁盘持久化(persistence)。

并通过 Redis 哨兵(Sentinel)和自动分区(Cluster)提供高可用性(High Availability)。

Redis 的数据模型如下图:

image

Redis 数据模型

Redis 的数据淘汰策略如下图:

image


Redis 数据淘汰策略

Redis 的数据淘汰内部实现如下图:

image


Redis 数据淘汰内部实现

Redis 的持久化方式如下图:

image

Redis 持久化方式

Redis 底层实现部分解析如下图:

image

启动的部分过程图解


image

Server 端持久化的部分操作图解

底层哈希表实现(渐进式Rehash)如下图:

image

初始化字典


image


新增字典元素图解


image

Rehash 执行流程

Redis 的缓存设计原则如下图所示:

image

Redis 缓存设计原则

Redis 与 Memcached 的比较如下图:

image

Redis 与 Memcached 比较

下面主要介绍缓存架构设计常见问题以及解决方案,业界案例。

分层缓存架构设计

image

缓存带来的复杂度问题

常见的问题主要包括如下几点:
数据一致性
缓存穿透
缓存雪崩
缓存高可用
缓存热点

下面逐一介绍分析这些问题以及相应的解决方案。

数据一致性

因为缓存属于持久化数据的一个副本,因此不可避免的会出现数据不一致问题,导致脏读或读不到数据的情况。

数据不一致,一般是因为网络不稳定或节点故障导致问题出现的常见 3 个场景以及解决方案:

image

缓存穿透

缓存一般是 Key-Value 方式存在,当某一个 Key 不存在时会查询数据库,假如这个 Key,一直不存在,则会频繁的请求数据库,对数据库造成访问压力。

主要解决方案:
对结果为空的数据也进行缓存,当此 Key 有数据后,清理缓存。
一定不存在的 Key,采用布隆过滤器,建立一个大的 Bitmap 中,查询时通过该 Bitmap 过滤。

缓存雪崩

image

缓存高可用

缓存是否高可用,需要根据实际的场景而定,并不是所有业务都要求缓存高可用,需要结合具体业务,具体情况进行方案设计,例如临界点是否对后端的数据库造成影响。

主要解决方案:
分布式:实现数据的海量缓存。
复制:实现缓存数据节点的高可用。

缓存热点

一些特别热点的数据,高并发访问同一份缓存数据,导致缓存服务器压力过大。

解决:复制多份缓存副本,把请求分散到多个缓存服务器上,减轻缓存热点导致的单台缓存服务器压力

业界案例

案例主要参考新浪微博陈波的技术分享,可以查看原文《百亿级日访问量的应用如何做缓存架构设计?》

技术挑战

image


Feed 缓存架构图


image

架构特点

新浪微博把 SSD 应用在分布式缓存场景中,将传统的 Redis/MC + MySQL 方式,扩展为 Redis/MC + SSD Cache + MySQL 方式。

SSD Cache 作为 L2 缓存使用,第一降低了 MC/Redis 成本过高,容量小的问题,也解决了穿透 DB 带来的数据库访问压力。

主要在数据架构、性能、储存成本、服务化等不同方面进行了优化增强。

image


image

原文发布时间为:2018-08-05
本文作者:陈彩华
本文来自云栖社区合作伙伴“数据和云”,了解相关信息可以关注“数据和云”。

相关文章
|
19天前
|
存储 缓存 NoSQL
分布式系统架构8:分布式缓存
本文介绍了分布式缓存的理论知识及Redis集群的应用,探讨了AP与CP的区别,Redis作为AP系统具备高性能和高可用性但不保证强一致性。文章还讲解了透明多级缓存(TMC)的概念及其优缺点,并详细分析了memcached和Redis的分布式实现方案。此外,针对缓存穿透、击穿、雪崩和污染等常见问题提供了应对策略,强调了Cache Aside模式在解决数据一致性方面的作用。最后指出,面试中关于缓存的问题多围绕Redis展开,建议深入学习相关知识点。
123 8
|
1月前
|
存储 Prometheus Cloud Native
分布式系统架构6:链路追踪
本文深入探讨了分布式系统中的链路追踪理论,涵盖追踪与跨度的概念、追踪系统的模块划分及数据收集的三种方式。链路追踪旨在解决复杂分布式系统中请求流转路径不清晰的问题,帮助快速定位故障和性能瓶颈。文中介绍了基于日志、服务探针和边车代理的数据收集方法,并简述了OpenTracing、OpenCensus和OpenTelemetry等链路追踪协议的发展历程及其特点。通过理解这些概念,可以更好地掌握开源链路追踪框架的使用。
96 41
|
22天前
|
存储 缓存 安全
分布式系统架构7:本地缓存
这是小卷关于分布式系统架构学习的第10篇文章,主要介绍本地缓存的基础理论。文章分析了引入缓存的利弊,解释了缓存对CPU和I/O压力的缓解作用,并讨论了缓存的吞吐量、命中率、淘汰策略等属性。同时,对比了几种常见的本地缓存工具(如ConcurrentHashMap、Ehcache、Guava Cache和Caffeine),详细介绍了它们的访问控制、淘汰策略及扩展功能。
49 6
|
25天前
|
存储 关系型数据库 分布式数据库
[PolarDB实操课] 01.PolarDB分布式版架构介绍
《PolarDB实操课》之“PolarDB分布式版架构介绍”由阿里云架构师王江颖主讲。课程涵盖PolarDB-X的分布式架构、典型业务场景(如实时交易、海量数据存储等)、分布式焦点问题(如业务连续性、一致性保障等)及技术架构详解。PolarDB-X基于Share-Nothing架构,支持HTAP能力,具备高可用性和容错性,适用于多种分布式改造和迁移场景。课程链接:[https://developer.aliyun.com/live/253957](https://developer.aliyun.com/live/253957)。更多内容可访问阿里云培训中心。
[PolarDB实操课] 01.PolarDB分布式版架构介绍
|
2月前
|
设计模式 存储 算法
分布式系统架构5:限流设计模式
本文是小卷关于分布式系统架构学习的第5篇,重点介绍限流器及4种常见的限流设计模式:流量计数器、滑动窗口、漏桶和令牌桶。限流旨在保护系统免受超额流量冲击,确保资源合理分配。流量计数器简单但存在边界问题;滑动窗口更精细地控制流量;漏桶平滑流量但配置复杂;令牌桶允许突发流量。此外,还简要介绍了分布式限流的概念及实现方式,强调了限流的代价与收益权衡。
89 11
|
4月前
|
NoSQL Java Redis
太惨痛: Redis 分布式锁 5个大坑,又大又深, 如何才能 避开 ?
Redis分布式锁在高并发场景下是重要的技术手段,但其实现过程中常遇到五大深坑:**原子性问题**、**连接耗尽问题**、**锁过期问题**、**锁失效问题**以及**锁分段问题**。这些问题不仅影响系统的稳定性和性能,还可能导致数据不一致。尼恩在实际项目中总结了这些坑,并提供了详细的解决方案,包括使用Lua脚本保证原子性、设置合理的锁过期时间和使用看门狗机制、以及通过锁分段提升性能。这些经验和技巧对面试和实际开发都有很大帮助,值得深入学习和实践。
太惨痛: Redis 分布式锁 5个大坑,又大又深, 如何才能 避开 ?
|
1天前
|
缓存 NoSQL 中间件
Redis,分布式缓存演化之路
本文介绍了基于Redis的分布式缓存演化,探讨了分布式锁和缓存一致性问题及其解决方案。首先分析了本地缓存和分布式缓存的区别与优劣,接着深入讲解了分布式远程缓存带来的并发、缓存失效(穿透、雪崩、击穿)等问题及应对策略。文章还详细描述了如何使用Redis实现分布式锁,确保高并发场景下的数据一致性和系统稳定性。最后,通过双写模式和失效模式讨论了缓存一致性问题,并提出了多种解决方案,如引入Canal中间件等。希望这些内容能为读者在设计分布式缓存系统时提供有价值的参考。感谢您的阅读!
Redis,分布式缓存演化之路
|
2月前
|
存储 NoSQL Java
使用lock4j-redis-template-spring-boot-starter实现redis分布式锁
通过使用 `lock4j-redis-template-spring-boot-starter`,我们可以轻松实现 Redis 分布式锁,从而解决分布式系统中多个实例并发访问共享资源的问题。合理配置和使用分布式锁,可以有效提高系统的稳定性和数据的一致性。希望本文对你在实际项目中使用 Redis 分布式锁有所帮助。
193 5
|
3月前
|
NoSQL Java 数据处理
基于Redis海量数据场景分布式ID架构实践
【11月更文挑战第30天】在现代分布式系统中,生成全局唯一的ID是一个常见且重要的需求。在微服务架构中,各个服务可能需要生成唯一标识符,如用户ID、订单ID等。传统的自增ID已经无法满足在集群环境下保持唯一性的要求,而分布式ID解决方案能够确保即使在多个实例间也能生成全局唯一的标识符。本文将深入探讨如何利用Redis实现分布式ID生成,并通过Java语言展示多个示例,同时分析每个实践方案的优缺点。
99 8
|
3月前
|
NoSQL Redis
Redis分布式锁如何实现 ?
Redis分布式锁通过SETNX指令实现,确保仅在键不存在时设置值。此机制用于控制多个线程对共享资源的访问,避免并发冲突。然而,实际应用中需解决死锁、锁超时、归一化、可重入及阻塞等问题,以确保系统的稳定性和可靠性。解决方案包括设置锁超时、引入Watch Dog机制、使用ThreadLocal绑定加解锁操作、实现计数器支持可重入锁以及采用自旋锁思想处理阻塞请求。
77 16