深入理解JAVA虚拟机学习笔记(二)垃圾回收策略

简介:  上篇文章介绍了JVM内存模型的相关知识,其实还有些内容可以更深入的介绍下,比如运行时常量池的动态插入,直接内存等,后期抽空再完善下上篇博客,今天来介绍下JVM中的一些垃圾回收策略。        一、finailize()方法                           在介绍GC策略前,先介绍下GC中的finailize方法。

 上篇文章介绍了JVM内存模型的相关知识,其实还有些内容可以更深入的介绍下,比如运行时常量池的动态插入,直接内存等,后期抽空再完善下上篇博客,今天来介绍下JVM中的一些垃圾回收策略。

       一、finailize()方法              

            在介绍GC策略前,先介绍下GC中的finailize方法。当对象没有任何引用的时候,通常这个对象会被回收掉,但如果我们想在对象被回收前进行一些操作,比如关闭一些资源,或者让这个对象复活,不让他被回收怎么办?这时候就要用到finailize方法了。finailize方法是Object类中定义的方法,意味着任何一个对象都有这个方法。但这个方法只会调用一次,如果把这个对象复活后再次让这个对象死亡,那第2次回收该对象的时候是不会调用finailize方法的,而且优先级比较低,并不能保证一定会被执行,因此不建议使用finalize方法。总结起来就是3个特性: ①、GC之前被调用 。②、只会被调用一次。③、不可靠,不能保证被执行,不建议使用。关于finalize使用方法,参考如下代码:

复制代码
 1 public class FinalizeTest {
 2 
 3     private static FinalizeTest test;
 4     /**
 5      * VM参数:-XX: +PrintGCDetails -Xmx=1M -Xms=1M
 6      *
 7      * @param args
 8      */
 9     public static void main(String[] args) {
10         //先对test对象赋值
11         test = new FinalizeTest();
12         int _1m = 1024 * 1024;
13         //将test置为null,便于回收
14         test = null;
15         try {
16             System.gc();
17             //模拟睡眠5s,finalize优先级较低,保证finalize能执行
18             Thread.sleep(5000);
19         } catch (InterruptedException e) {
20             e.printStackTrace();
21         }
22         if (test != null) {
23             System.out.println("first,i am alive");
24         }else{
25             System.out.println("first,i am dead");
26         }
27         //由于test在finalize方法里复活了,再次将test置为null
28         test = null;
29         try {
30             System.gc();
31             Thread.sleep(5000);//模拟睡眠5s,让GC回收
32         } catch (InterruptedException e) {
33             e.printStackTrace();
34         }
35         if (test != null) {
36             System.out.println("second,i am alive");
37         }else{
38             System.out.println("second,i am dead");
39         }
40 
41     }
42     @Override
43     protected void finalize() throws Throwable {
44         test = this ;
45         System.out.println("finalize excuted");
46         super.finalize();   //调用父类的finailize方法
47     }
48 }
复制代码

         该代码运行结果如下:

         

         可以看到,finalize方法执行后,test对象又被重新激活了,因此打印了first,i am alive。但是第二次GC的时候,finalize方法并未被执行,因此打印了second,i am dead。前面提到finalize是优先级低不可靠的,那如果没有Thread.sleep(5000),再来看下代码和结果:

 
复制代码
 1 public class FinalizeTest {
 2 
 3     private static FinalizeTest test;
 4     /**
 5      * VM参数:-XX: +PrintGCDetails -Xmx=1M -Xms=1M
 6      *
 7      * @param args
 8      */
 9     public static void main(String[] args) {
10         //先对test对象赋值
11         test = new FinalizeTest();
12         int _1m = 1024 * 1024;
13         //将test置为null,便于回收
14         test = null;
15         try {
16             System.gc();
17             //模拟睡眠5s,finalize优先级较低,保证finalize能执行
18             //不执行睡眠操作,Thread.sleep(5000);
19         } catch (Exception e) {
20             e.printStackTrace();
21         }
22         if (test != null) {
23             System.out.println("first,i am alive");
24         }else{
25             System.out.println("first,i am dead");
26         }
27         //由于test在finalize方法里复活了,再次将test置为null
28         test = null;
29         try {
30             System.gc();
31             //不执行睡眠操作,Thread.sleep(5000);//模拟睡眠5s,让GC回收
32         } catch (Exception e) {
33             e.printStackTrace();
34         }
35         if (test != null) {
36             System.out.println("second,i am alive");
37         }else{
38             System.out.println("second,i am dead");
39         }
40 
41     }
42     @Override
43     protected void finalize() throws Throwable {
44         test = this ;
45         System.out.println("finalize excuted");
46         super.finalize();   //调用父类的finailize方法
47     }
48 }
复制代码
 

        运行结果如下:  

       

       这里可以很清楚地看到,finalize方法的优先级是比较低的。

       关于这个例子的反思:这个例子中第一段代码是参考《深入理解java虚拟机》里的代码实现的,但是总感觉有2点疑问:为什么test对象是以static修饰的成员变量方式存在?如果是static修饰,那就是存在方法区了,而方法区的GC通常效果不太好的。另一个是以成员变量的方式存在,这样finalize回收的时候,体现不出是对当前对象本身的回收,所以感觉这个例子并不是很好。

      二、引用计数法

      引用计数法是一种比较早的GC回收算法,目前一般不采用,其主要思想是:每个对象都维持一个引用计数器,初始值为0,当一个对象被引用的时候,该对象的引用计数器就加1,当不被引用的时候,该对象的引用计数器就减1,如果一个对象的引用计数器变为了0,则该对象被认为是可以回收的。采用这种方式的优缺点都很明显,优点是实现简单,效率高,缺点是可能存在循环引用,导致内存溢出。

     三、标记-清除法 

         标记-清除法按名字分为“标记”和“清除”2个阶段,其基本思想是:首先标记出所有存活的对象,标记完成后,统一清除所有需要被回收的对象。那怎么判断某个对象是可以回收的呢?GC时,从一系列GC Roots根节点开始遍历,遍历时走过的路径即称为引用链,如果一个对象和GC Roots没有任何引用链相关,那么这个对象就不可用,就会被判定为可回收,这种算法也叫根搜索算法那么哪些对象可以成为GC Roots对象呢?在java语言里,可以作为GC Roots的对象包括下面4种: 

            虚拟机栈中的引用变量 

            方法区中的类静态属性引用的对象 

           方法区中的常量引用的对象 

           本地方法栈中JNI(即native方法)的引用的对象

           标记-清除法的算法示意图如下:

  

     注:本文的GC回收算法图片转自一个网友的文章(点这里),该网友的图片内容也与原著一致,只是颜色不同。

     四、新生代的复制法

           复制法的基本思想是:将内存分为大小相等的2块,每次只使用其中一块,GC时每次将所有存活的对象复制到另一块区域,然后清理该内存

           这几种都是方法区和栈中的引用对象。复制法的优点是:实现简单,回收速度快,且不会产生内存碎片。但由于每次只使用其中一块,导致内存利用率较低。复制算法的示意图如下:

        

        现在的商业虚拟机都采用复制法来回收新生代,由于新生代的对象98%以上都是朝生夕死的,所以并不需要按照1:1来分配,而是将内存分为较大的Eden区和2块较小的Survivor区(通常Eden和Survivor区大小的比值为8:1:1,可以根据SurvivorRationJVM内存参数来设置比值),每次使用Eden区和其中一块Survivor区类分配对象,GC时,将Eden区和Survivor区中的存活对象复制到另一块Survivor区域,这样一来,内存利用率就高了,而且运行速度也很快。

       五、老年代的标记-整理法

           复制法在对象存活率较高时,回收效率就变低了,而在老年代中,大部分的对象都是存活期较高的对象,因此就不适宜采用复制法进行老年代的GC。根据老年代的特点,并结合标记-清除法的思路,于是提出了标记-整理法。其主要思路是:标记过程与标记-清除法一致,只是标记完成后,不直接对未存活进行清除,而是将所有存活的对象都向一端移动,然后清理掉端边界以外的所有内存区域。这种方法的优点是不会产生内存碎片。标记-整理法的算法示意图如下:        

    

目录
相关文章
|
5月前
|
Arthas 存储 算法
深入理解JVM,包含字节码文件,内存结构,垃圾回收,类的声明周期,类加载器
JVM全称是Java Virtual Machine-Java虚拟机JVM作用:本质上是一个运行在计算机上的程序,职责是运行Java字节码文件,编译为机器码交由计算机运行类的生命周期概述:类的生命周期描述了一个类加载,使用,卸载的整个过类的生命周期阶段:类的声明周期主要分为五个阶段:加载->连接->初始化->使用->卸载,其中连接中分为三个小阶段验证->准备->解析类加载器的定义:JVM提供类加载器给Java程序去获取类和接口字节码数据类加载器的作用:类加载器接受字节码文件。
462 55
|
4月前
|
Java API 微服务
2025 年 Java 从入门到精通学习笔记全新版
《Java学习笔记:从入门到精通(2025更新版)》是一本全面覆盖Java开发核心技能的指南,适合零基础到高级开发者。内容包括Java基础(如开发环境配置、核心语法增强)、面向对象编程(密封类、接口增强)、进阶技术(虚拟线程、结构化并发、向量API)、实用类库与框架(HTTP客户端、Spring Boot)、微服务与云原生(容器化、Kubernetes)、响应式编程(Reactor、WebFlux)、函数式编程(Stream API)、测试技术(JUnit 5、Mockito)、数据持久化(JPA、R2DBC)以及实战项目(Todo应用)。
221 5
|
14天前
|
小程序 Java 知识图谱
Java 学习笔记 —— BMI & BMR 计算器
这是一个使用 Java 编写的 BMI 与 BMR 计算器小程序,可输入年龄、性别、身高和体重,计算身体质量指数(BMI)和基础代谢率(BMR),并输出健康评估结果。通过该项目,掌握了 Java 的输入处理、数据验证、条件判断、数学运算及格式化输出等基础知识,是 Java 初学者的理想练习项目。
|
13天前
|
Java
Java 数组学习笔记
本文整理Java数组常用操作:遍历、求和、查找、最值及二维数组行求和等典型练习,涵盖静态初始化、元素翻倍、去极值求平均等实例,帮助掌握数组基础与应用。
|
7月前
|
存储 Java
# 【Java全栈学习笔记-U1-day02】变量+数据类型+运算符
本篇笔记主要围绕Java全栈学习的第二天内容展开,涵盖了变量、数据类型、运算符以及Scanner类的应用。首先介绍了变量的概念与命名规范,以及如何定义和使用变量;接着详细讲解了Java中的基本数据类型,包括整型、浮点型、字符型、布尔型等,并通过实例演示了数据类型的运用。随后,深入探讨了各类运算符(赋值、算术、关系、逻辑)及其优先级,帮助理解表达式的构成。最后,介绍了如何利用Scanner类实现用户输入功能,并通过多个综合示例(如计算圆面积、购物打折、变量交换及银行利息计算)巩固所学知识。完成相关作业将进一步加深对这些基础概念的理解与实践能力。
98 13
|
5月前
|
缓存 算法 Java
JVM深入原理(八)(一):垃圾回收
弱引用-作用:JVM中使用WeakReference对象来实现软引用,一般在ThreadLocal中,当进行垃圾回收时,被弱引用对象引用的对象就直接被回收.软引用-作用:JVM中使用SoftReference对象来实现软引用,一般在缓存中使用,当程序内存不足时,被引用的对象就会被回收.强引用-作用:可达性算法描述的根对象引用普通对象的引用,指的就是强引用,只要有这层关系存在,被引用的对象就会不被垃圾回收。引用计数法-缺点:如果两个对象循环引用,而又没有其他的对象来引用它们,这样就造成垃圾堆积。
146 0
|
5月前
|
算法 Java 对象存储
JVM深入原理(八)(二):垃圾回收
Java垃圾回收过程会通过单独的GC线程来完成,但是不管使用哪一种GC算法,都会有部分阶段需要停止所有的用户线程。这个过程被称之为StopTheWorld简称STW,如果STW时间过长则会影响用户的使用。一般来说,堆内存越大,最大STW就越长,想减少最大STW,就会减少吞吐量,不同的GC算法适用于不同的场景。分代回收算法将整个堆中的区域划分为新生代和老年代。--超过新生代大小的大对象会直接晋升到老年代。
100 0
|
7月前
|
缓存 监控 算法
JVM简介—2.垃圾回收器和内存分配策略
本文介绍了Java垃圾回收机制的多个方面,包括垃圾回收概述、对象存活判断、引用类型介绍、垃圾收集算法、垃圾收集器设计、具体垃圾回收器详情、Stop The World现象、内存分配与回收策略、新生代配置演示、内存泄漏和溢出问题以及JDK提供的相关工具。
JVM简介—2.垃圾回收器和内存分配策略
|
7月前
|
开发框架 Java 开发工具
【Java全栈学习笔记-U1-day01】Java介绍
本笔记整理了Java学习的基础内容,涵盖程序理解、Java语言特性、JDK安装与配置、Java程序开发工具及编写步骤。重点介绍了Java程序的基本结构、编译和运行过程,以及输出语句的使用。通过实例演示了IDEA创建Java程序的方法,并强调了编码规范和注意事项。适合初学者复习和交流学习。 主要内容: 1. 理解程序:计算机组成、程序定义。 2. 简介:Java语言特点、技术平台、JDK作用。 3. 编写Java程序:编写、编译、运行步骤,基本结构。 4. 输出语句 5. DEA使用:新建工程、保存位置、文件介绍、新建类。 6. 扩展:注释、代码规范、大小写敏感、缩进等。
|
10月前
|
算法 网络协议 Java
【JVM】——GC垃圾回收机制(图解通俗易懂)
GC垃圾回收,标识出垃圾(计数机制、可达性分析)内存释放机制(标记清除、复制算法、标记整理、分代回收)

热门文章

最新文章