Elasticsearch Sliced Scroll分页检索案例分享
我们在文章《 Elasticsearch Scroll分页检索案例分享》中介绍了elasticsearch scroll的基本用法,本文介绍Elasticsearch Sliced Scroll分页检索功能。
1.准备工作
参考文档《 高性能elasticsearch ORM开发库使用介绍》导入和配置es客户端
2.定义Sliced Scroll检索dsl
创建配置文件-在resources目录下定义文件scroll.xml
esmapper/scroll.xml
文件内容包含Sliced Scroll检索dsl语句-scrollSliceQuery
3.串行方式执行slice检索
4.并行方式执行slice检索
通过串行运行和并行运行结果比较,并行处理的性能要好很多,实际检索到的文档数量等价一致。
5.参考文档
https://www.elastic.co/guide/en/elasticsearch/reference/6.2/search-request-scroll.html
6.开发交流
elasticsearch技术交流群:166471282
elasticsearch微信公众号:
我们在文章《 Elasticsearch Scroll分页检索案例分享》中介绍了elasticsearch scroll的基本用法,本文介绍Elasticsearch Sliced Scroll分页检索功能。
1.准备工作
参考文档《 高性能elasticsearch ORM开发库使用介绍》导入和配置es客户端
2.定义Sliced Scroll检索dsl
创建配置文件-在resources目录下定义文件scroll.xml
esmapper/scroll.xml
文件内容包含Sliced Scroll检索dsl语句-scrollSliceQuery
<property name="scrollSliceQuery"> <![CDATA[ { "slice": { "id": $id, "max": $max }, "size":$size, "query": { "term" : { "gc.jvmGcOldCount" : 3 } } } ]]> </property>
3.串行方式执行slice检索
/** * 串行方式执行slice scroll操作 */ @Test public void testSliceScroll() { ClientInterface clientUtil = ElasticSearchHelper.getConfigRestClientUtil("esmapper/scroll.xml"); List<String> scrollIds = new ArrayList<>(); long starttime = System.currentTimeMillis(); //scroll slice分页检索 int max = 6; long realTotalSize = 0; for (int i = 0; i < max; i++) { Map params = new HashMap(); params.put("id", i); params.put("max", max);//最多6个slice,不能大于share数 params.put("size", 100);//每页100条记录 ESDatas<Map> sliceResponse = clientUtil.searchList("agentstat-*/_search?scroll=1m", "scrollSliceQuery", params,Map.class); List<Map> sliceDatas = sliceResponse.getDatas(); realTotalSize = realTotalSize + sliceDatas.size(); long totalSize = sliceResponse.getTotalSize(); String scrollId = sliceResponse.getScrollId(); if (scrollId != null) scrollIds.add(scrollId); System.out.println("totalSize:" + totalSize); System.out.println("scrollId:" + scrollId); if (sliceDatas != null && sliceDatas.size() >= 100) {//每页100条记录,迭代scrollid,遍历scroll分页结果 do { sliceResponse = clientUtil.searchScroll("1m", scrollId, Map.class); String sliceScrollId = sliceResponse.getScrollId(); if (sliceScrollId != null) scrollIds.add(sliceScrollId); sliceDatas = sliceResponse.getDatas(); if (sliceDatas == null || sliceDatas.size() < 100) { break; } realTotalSize = realTotalSize + sliceDatas.size(); } while (true); } } //打印处理耗时和实际检索到的数据 long endtime = System.currentTimeMillis(); System.out.println("耗时:"+(endtime - starttime)+",realTotalSize:"+realTotalSize); //查询存在es服务器上的scroll上下文信息 String scrolls = clientUtil.executeHttp("_nodes/stats/indices/search", ClientUtil.HTTP_GET); System.out.println(scrolls); //处理完毕后清除scroll上下文信息 if(scrollIds.size() > 0) { scrolls = clientUtil.deleteScrolls(scrollIds); System.out.println(scrolls); } //清理完毕后查看scroll上下文信息 scrolls = clientUtil.executeHttp("_nodes/stats/indices/search", ClientUtil.HTTP_GET); System.out.println(scrolls); }
4.并行方式执行slice检索
//用来存放实际slice检索总记录数 long realTotalSize ; //辅助方法,用来累计每次scroll获取到的记录数 synchronized void incrementSize(int size){ this.realTotalSize = this.realTotalSize + size; } /** * 并行方式执行slice scroll操作 */ @Test public void testParralSliceScroll() { final ClientInterface clientUtil = ElasticSearchHelper.getConfigRestClientUtil("esmapper/scroll.xml"); final List<String> scrollIds = new ArrayList<>(); long starttime = System.currentTimeMillis(); //scroll slice分页检索 final int max = 6; final CountDownLatch countDownLatch = new CountDownLatch(max);//线程任务完成计数器,每个线程对应一个sclice,每运行完一个slice任务,countDownLatch计数减去1 for (int j = 0; j < max; j++) {//启动max个线程,并行处理每个slice任务 final int i = j; Thread sliceThread = new Thread(new Runnable() {//多线程并行执行scroll操作做,每个线程对应一个sclice @Override public void run() { Map params = new HashMap(); params.put("id", i); params.put("max", max);//最多6个slice,不能大于share数 params.put("size", 100);//每页100条记录 ESDatas<Map> sliceResponse = clientUtil.searchList("agentstat-*/_search?scroll=1m", "scrollSliceQuery", params,Map.class); List<Map> sliceDatas = sliceResponse.getDatas(); incrementSize( sliceDatas.size());//统计实际处理的文档数量 long totalSize = sliceResponse.getTotalSize(); String scrollId = sliceResponse.getScrollId(); if (scrollId != null) scrollIds.add(scrollId); System.out.println("totalSize:" + totalSize); System.out.println("scrollId:" + scrollId); if (sliceDatas != null && sliceDatas.size() >= 100) {//每页100条记录,迭代scrollid,遍历scroll分页结果 do { sliceResponse = clientUtil.searchScroll("1m", scrollId, Map.class); String sliceScrollId = sliceResponse.getScrollId(); if (sliceScrollId != null) scrollIds.add(sliceScrollId); sliceDatas = sliceResponse.getDatas(); if (sliceDatas == null || sliceDatas.size() < 100) { break; } incrementSize( sliceDatas.size());//统计实际处理的文档数量 } while (true); } countDownLatch.countDown();//slice检索完毕后计数器减1 } }); sliceThread.start();//启动线程 } try { countDownLatch.await();//等待所有的线程执行完毕,计数器变成0 } catch (InterruptedException e) { e.printStackTrace(); } //打印处理耗时和实际检索到的数据 long endtime = System.currentTimeMillis(); System.out.println("耗时:"+(endtime - starttime)+",realTotalSize:"+realTotalSize); //查询存在es服务器上的scroll上下文信息 String scrolls = clientUtil.executeHttp("_nodes/stats/indices/search", ClientUtil.HTTP_GET); // System.out.println(scrolls); //处理完毕后清除scroll上下文信息 if(scrollIds.size() > 0) { scrolls = clientUtil.deleteScrolls(scrollIds); // System.out.println(scrolls); } //清理完毕后查看scroll上下文信息 scrolls = clientUtil.executeHttp("_nodes/stats/indices/search", ClientUtil.HTTP_GET); // System.out.println(scrolls); }
通过串行运行和并行运行结果比较,并行处理的性能要好很多,实际检索到的文档数量等价一致。
5.参考文档
https://www.elastic.co/guide/en/elasticsearch/reference/6.2/search-request-scroll.html
6.开发交流
elasticsearch技术交流群:166471282
elasticsearch微信公众号: