【公测中】阿里云发布国内首个大数据双活容灾服务,满足高要求大数据灾备场景

本文涉及的产品
云原生大数据计算服务MaxCompute,500CU*H 100GB 3个月
云原生大数据计算服务 MaxCompute,5000CU*H 100GB 3个月
简介: 在6月上旬举行的云栖大会上海峰会上,阿里云发布了国内首个大数据集群双活容灾产品-混合云容灾服务下的混合云大数据容灾服务(HDR for Big Data, 简称 HDR-BD),并已经在7月份开始邀测。

在6月上旬举行的云栖大会上海峰会上,阿里云发布了国内首个大数据集群双活容灾产品-混合云容灾服务下的混合云大数据容灾服务(HDR for Big Data, 简称 HDR-BD),并已经在7月份开始邀测。HDR-BD采用业界领先的数据双向实时复制技术,可以实现Hadoop集群双活和准0 RPO容灾,为大数据灾备制定了全新的标准。

常见Hadoop灾备技术的挑战

当前比较常见的Hadoop集群灾备方式是用distcp将数据定期复制到一个备用集群做容灾用途,或者将数据复制到只读集群、二级存储作为多恢复点的备份。这些方案都有明显弱点。

RPO和RTO是衡量灾备方案的两个重要指标,RPO-恢复点目标,决定了丢失多少数据,RTO-恢复时间目标,决定了业务中断了多长时间。由于传统的Hadoop集群灾备方式使用的是distcp来做容灾,也就意味着数据复制不是实时的,因此用户必须承受至少小时级到天级的RPO。并且主站宕机后,将只读集群或二级存储中的数据恢复出来会占用大量时间,而拉起standby集群重新启动业务依然是一个耗时的操作。因此,传统的Hadoop集群灾备方式在RPO和RTO方面都有较大挑战。

除此之外,由于灾备集群平时处于备用状态,不能用于运行业务,对于用户来说也属于资源浪费。

以上这些问题长期困扰着Hadoop集群的用户和管理员们,如何突破RPO和RTO瓶颈,大数据集群的灾备领域亟需一种全新的技术来彻底解决目前的困境。

HDR- BD此次带来的双向实时复制技术可以在两个Hadoop集群之间建立双活架构,RPO接近0;RTO因为数据随时可读写而极大压缩;双活架构可以让两个集群运行不同的应用,避免资源浪费。这些特性将Hadoop灾备标准提高到了一个全新的高度,为Hadoop用户带来了极高的价值。

HDR-BD引入大数据双向复制技术,满足高要求的大数据灾备场景

阿里云此次推出的Hadoop双活容灾方案HDR-BD引入了业界领先的大数据双向复制技术,结合强大的公共云基础设施,可以满足极高要求的大数据灾备场景,为企业Hadoop集群数据保护提供了全新的选择。
HDR-BD的优势在于:

  1. 极低RPO:数据的实施复制决定了每一个写操作都会实时复制到配对集群,RPO几乎为0
  2. 极高资源利用率:数据双向复制确保两个集群共享一份数据但运行不同应用,不会出现一个集群必须处于只读会备用状态的问题,计算资源可以充分利用
  3. 运维复杂度极低: HDR-BD实现了数据的全自动实时双向复制,无需特定时间窗口,也无需担心对业务的影响

1

在自建数据中心和阿里云之间部署HDR-BD服务器配对,用户就可以将自建Hadoop集群与阿里云无缝集成,充分利用阿里云EMR和OSS建立极为高效的Hadoop灾备,迁移系统。HDR-BD可以满足的核心场景包括

  1. 近0 RPO Hadoop云容灾
    将自建Hadoop集群的数据实时复制到阿里云EMR集群,实现接近0 RPO的Hadoop集群容灾。
  2. Hadoop集群与阿里云EMR集群双活
    在自建Hadoop集群和阿里云EMR集群之间建立数据双向复制。两个集群共享一份数据,但是运行不同的应用,实现集群双活,达到资源的最大化利用。
  3. Hadoop数据实时备份,迁移上云
    云上HDR-BD服务器可以直连至阿里云对象存储OSS。在无需EMR集群的情况下,HDR for Big Data可以将Hadoop数据实时复制到阿里云OSS,实现接近0 RPO的云备份;同时这个机制也可以作为Hadoop数据迁移上云的理想方案。利用这个机制做Hadoop集群迁移上云,在迁移过程中无需启动EMR集群;同时迁移过程无需复杂定制化脚本开发或者复杂的业务停机规划。

该服务现已开始邀测,您可以到阿里云混合云容灾服务页面https://cn.aliyun.com/product/hdr 注册,阿里云在评估后会尽快联系您。

相关实践学习
基于MaxCompute的热门话题分析
本实验围绕社交用户发布的文章做了详尽的分析,通过分析能得到用户群体年龄分布,性别分布,地理位置分布,以及热门话题的热度。
SaaS 模式云数据仓库必修课
本课程由阿里云开发者社区和阿里云大数据团队共同出品,是SaaS模式云原生数据仓库领导者MaxCompute核心课程。本课程由阿里云资深产品和技术专家们从概念到方法,从场景到实践,体系化的将阿里巴巴飞天大数据平台10多年的经过验证的方法与实践深入浅出的讲给开发者们。帮助大数据开发者快速了解并掌握SaaS模式的云原生的数据仓库,助力开发者学习了解先进的技术栈,并能在实际业务中敏捷的进行大数据分析,赋能企业业务。 通过本课程可以了解SaaS模式云原生数据仓库领导者MaxCompute核心功能及典型适用场景,可应用MaxCompute实现数仓搭建,快速进行大数据分析。适合大数据工程师、大数据分析师 大量数据需要处理、存储和管理,需要搭建数据仓库?学它! 没有足够人员和经验来运维大数据平台,不想自建IDC买机器,需要免运维的大数据平台?会SQL就等于会大数据?学它! 想知道大数据用得对不对,想用更少的钱得到持续演进的数仓能力?获得极致弹性的计算资源和更好的性能,以及持续保护数据安全的生产环境?学它! 想要获得灵活的分析能力,快速洞察数据规律特征?想要兼得数据湖的灵活性与数据仓库的成长性?学它! 出品人:阿里云大数据产品及研发团队专家 产品 MaxCompute 官网 https://www.aliyun.com/product/odps 
相关文章
|
12天前
|
SQL 分布式计算 运维
StarRocks 在爱奇艺大数据场景的实践
本文介绍了爱奇艺大数据OLAP服务负责人林豪在StarRocks年度峰会上的分享,重点讲述了爱奇艺OLAP引擎的演进及引入StarRocks后的显著效果。在广告业务中,StarRocks替换Impala+Kudu后,接口性能提升400%,P90查询延迟缩短4.6倍;在“魔镜”数据分析平台中,StarRocks替代Spark达67%,P50查询速度提升33倍,P90提升15倍,节省4.6个人天。未来,爱奇艺计划进一步优化存算一体和存算分离架构,提升整体数据处理效率。
StarRocks 在爱奇艺大数据场景的实践
|
22天前
|
SQL 缓存 数据处理
数据无界、湖仓无界,Apache Doris 湖仓一体典型场景实战指南(下篇)
Apache Doris 提出“数据无界”和“湖仓无界”理念,提供高效的数据管理方案。本文聚焦三个典型应用场景:湖仓分析加速、多源联邦分析、湖仓数据处理,深入介绍 Apache Doris 的最佳实践,帮助企业快速响应业务需求,提升数据处理和分析效率
数据无界、湖仓无界,Apache Doris 湖仓一体典型场景实战指南(下篇)
|
23天前
|
SQL 分布式计算 数据挖掘
阿里云 MaxCompute MaxQA 开启公测,公测可申请 100CU 计算资源解锁近实时高效查询体验
阿里云云原生大数据计算服务 MaxCompute 推出 MaxQA(原 MCQA2.0)查询加速功能,在独享的查询加速资源池的基础上,对管控链路、查询优化器、执行引擎、存储引擎以及缓存机制等多个环节进行全面优化,显著减少了查询响应时间,适用于 BI 场景、交互式分析以及近实时数仓等对延迟要求高且稳定的场景。现正式开启公测,公测期间可申请100CU(价值15000元)计算资源用于测试,欢迎广大开发者及企业用户参与,解锁高效查询体验!
阿里云 MaxCompute MaxQA 开启公测,公测可申请 100CU 计算资源解锁近实时高效查询体验
|
15天前
|
人工智能 大数据
阿里云云计算ACA、大数据ACA、人工智能ACA三门认证升级调整公告
阿里云云计算ACA、大数据ACA、人工智能ACA三门认证升级调整公告
|
15天前
|
存储 分布式计算 大数据
基于阿里云大数据平台的实时数据湖构建与数据分析实战
在大数据时代,数据湖作为集中存储和处理海量数据的架构,成为企业数据管理的核心。阿里云提供包括MaxCompute、DataWorks、E-MapReduce等在内的完整大数据平台,支持从数据采集、存储、处理到分析的全流程。本文通过电商平台案例,展示如何基于阿里云构建实时数据湖,实现数据价值挖掘。平台优势包括全托管服务、高扩展性、丰富的生态集成和强大的数据分析工具。
|
24天前
|
存储 分布式计算 物联网
美的楼宇科技基于阿里云 EMR Serverless Spark 构建 LakeHouse 湖仓数据平台
美的楼宇科技基于阿里云 EMR Serverless Spark 建设 IoT 数据平台,实现了数据与 AI 技术的有效融合,解决了美的楼宇科技设备数据量庞大且持续增长、数据半结构化、数据价值缺乏深度挖掘的痛点问题。并结合 EMR Serverless StarRocks 搭建了 Lakehouse 平台,最终实现不同场景下整体性能提升50%以上,同时综合成本下降30%。
|
2月前
|
机器学习/深度学习 人工智能 分布式计算
我的阿里云社区年度总结报告:Python、人工智能与大数据领域的探索之旅
我的阿里云社区年度总结报告:Python、人工智能与大数据领域的探索之旅
144 35
|
11天前
|
存储 分布式计算 运维
课时6:阿里云MaxCompute:轻松玩转大数据
阿里云MaxCompute是全新的大数据计算服务,提供快速、完全托管的PB级数据仓库解决方案。它拥有高效的压缩存储技术、强大的计算能力和丰富的用户接口,支持SQL查询、机器学习等高级分析。MaxCompute兼容多种计算模型,开箱即用,具备金融级安全性和灵活的数据授权功能,帮助企业节省成本并提升效率。
|
15天前
|
存储 人工智能 数据管理
媒体声音|专访阿里云数据库周文超博士:AI就绪的智能数据平台设计思路
媒体声音|专访阿里云数据库周文超博士:AI就绪的智能数据平台设计思路
|
15天前
|
SQL 人工智能 大数据
【4月重点功能发布】阿里云大数据+ AI 一体化平台
【4月重点功能发布】阿里云大数据+ AI 一体化平台