在浏览器上也能训练神经网络?TensorFlow.js带你玩游戏~

简介: 一直以来训练神经网络给我们的印象都是复杂、耗时、对硬件要求高。你有没有想过有一天在浏览器上也能训练神经网络~ 本文通过一篇详细的TensorFlow.js教程,带你玩一个用浏览器训练神经网络的游戏!

How to train neural network on browser

无论你是刚开始深度学习,亦或是个老练的老手,建立一个神经网络的训练环境有时都会很痛苦。让神经网络的训练像加载一个网页,然后点击几下,然后你就准备好马上进行推理,会不会是件很棒的事呢?(那必须棒)

在本教程中,我将向你展示如何使用浏览器上的框架 TensorFlow.js 构建一个模型,其中包含从你的网络摄像头收集到的数据,并在你的浏览器上进行训练。为了使模型有用,我们将把一个摄像头变成一个游戏 - Pong。

来玩个游戏先!

准备工作:

  1. 下载dist.zip [1] 并将其解压缩到你的本地机器上。
  2. 安装一个HTTP服务器,我的建议是通过 npm 在全球范围内安装http-server。
npm install -g http-server

你会问什么是 npm?它是Node.js的包安装程序,就像 python 的 pip 一样,可以在 [2] 获得。

在dist文件夹所在的命令行中运行以下命令,以便在端口上为本地计算机上的Web应用程序提供服务,例如1234。

http-server dist --cors -p 1234 -s

将浏览器窗口指向http://localhost:1234 ,我已经在Chrome和Firefox上进行了测试。

当页面完成加载后,开始收集三个动作的训练图像,左、中、右。在这里有一个提示,平衡训练样本,每个case可能大约有20个样本。

点击“TRAIN”,开始训练,并显示loss。

如果loss没有变化了,那么训练结束,现在点击“PLAY”开始游戏。

如果想重新开始,点击“RESET”。

让我们来看看游戏是如何构建的。本教程中使用了两种模型,第一种是一个预先训练过的卷积网络,它是从Keras导出的,它负责从网络摄像头图像中提取图像特征。第二个模型在你的浏览器上建立和训练,用图像特征对游戏控制进行预测。它是一个回归模型,预测值在-1~1之间,以控制玩家的paddle速度。它本质上是一个迁移学习任务。更多关于迁移学习的主题,请参考 [3]。这里不做进一步的讨论,可以从我Github [4]上下载源代码。

将预训练模型到处到tfjs


如果你只想学习web应用程序部分,可以跳过本节。

让我们首先将一个预先训练过的卷积网络导出到 tensorflow.js(tfjs) 格式。我选择使用本教程中的 ImageNet 数据集训练的 DenseNet,但是你可以使用其他模型,如MobileNet。尽量避免像 ResNet 和 VGGs 这样的大型深度卷积网络,尽管它们可能提供更高的精度,但不适合像我们这样运行在浏览器上的边缘设备。

第一步是在python脚本中将经过预先训练的 DenNet 的 keras 模型保存到一个.h5文件中。

from keras.applications.densenet import DenseNet121

model = DenseNet121(input_shape=(224, 224, 3), 
                    weights='imagenet')
model.save('./tfjs-densenet/model.h5')

然后运行转换脚本将.h5文件转换为浏览器缓存优化的tfjs文件。在继续之前,通过pip3安装tensorflowjs转换脚本python包。

pip3 install tensorflowjs

我们现在可以通过运行生成tfjs文件:

cd ./tfjs-densenet
tensorflowjs_converter --input_format keras 
./model.h5 ./model

你会看到一个名为 model 的文件夹,里面有几个文件。model.json文件定义了模型结构和权重文件的路径。经过预先训练的模型可以为 web 应用程序提供服务。例如,你可以将模型文件夹重命名为 serveDenseNet 并复制到你的 web app served文件夹,然后可以像这样加载模型:

const modelPath = window.location.origin + 
                    '/serveDenseNet/model.json'
const pretrainedNet = await tf.loadModel(modelPath);
const layer = pretrainedNet.getLayer(
                'conv5_block16_concat');
// Feature extractor model
cnnNet = tf.model({inputs: pretrainedNet.inputs,
                 outputs: layer.output});

window.location.origin 是web应用程序url,或者如果你在1234端口本地为其提供服务,它将是 localhost:1234。await 语句只允许 Web 应用程序在后台加载模型,而不冻结主用户界面。

另外,由于我们加载的模型是一个图像分类模型,顶层我们不需要,我们只需要模型的特征提取部分,解决方案是定位最顶层的卷积层,并截断前面代码片段中显示的模型。

从网络摄像头生成训练数据

为了准备回归模型的训练数据,我们将从网络摄像头抓取一些图像,并在Web应用程序中用预先训练的模型提取它们的特征。为了简化用于获取训练数据的用户界面,我们仅用三个值中的一个标记[-1, 0, 1 ]。

对于通过网络摄像头获取的每一幅图像,它都会被输入预先训练的 DenseNet 中提取特征并保存为训练样本。在通过特征提取器模型传递图像后,224×224彩色图像的维数将降为图像特征张量 [7,7,1024],大小取决于你所选择的预训练模型,并且可以通过在前面一节中选择的图层调用outputShape来获得,如下所示。

modelLayerShape = layer.outputShape.slice(1)

将提取的图像特征作为训练数据而不是原始图像的原因有两方面:一是节省了存储训练数据的内存,二是不运行特征提取模型,减少了训练时间。

下面的片段显示了一个图像是如何被网络摄像头捕获、提取和聚合的。请注意,所有图像特征都是以张量的形式保存的,这意味着如果你的模型运行在浏览器的WebGL后端,那么它一次可以在GPU内存中安全地包含多少个训练样本是有限制的。因此,不要期望使用数千甚至数百个图像样本来训练你的模型,这取决于你的硬件。

const img = webcam.capture();
controllerDataset.addExample(cnnNet.predict(img), 
                            CONTROLS_VALUES[label]);

神经网络的建立与训练


在不上传到任何云服务的情况下,建立和训练你的神经网络保护了你的隐私,因为数据永远不会离开你的设备,在你的浏览器上观察它的发生,让它变得更酷。

回归模型以图像特征作为输入,将其压平到一个向量,然后接着两个全连接层,生成一个浮点数来控制游戏。最后一个全连接层不需要激活函数,因为我们希望它产生实数在-1到1之间。我们选择的损失函数是训练过程中的均方误差,以最小化损失。更多选择可以阅读我的帖子,比如如何选择最后一层激活和损失函数[5]。

下面的代码将构建、编译和匹配模型。看起来非常类似于keras的工作流,对吗?

model = tf.sequential({
   layers: [
     tf.layers.flatten({inputShape: modelLayerShape}),
     // Layer 1
     tf.layers.dense({
       units: 100,
       activation: 'relu',
       kernelInitializer: 'varianceScaling',
       useBias: true
     }),
     // Layer 2.
     tf.layers.dense({
       units: 1,
       kernelInitializer: 'varianceScaling',
       useBias: false,
     })
   ]
});

// Creates the optimizers which drives training of 
//the model.const optimizer = tf.train.adam(
                               ui.getLearningRate());
model.compile({optimizer: optimizer, 
             loss: 'meanSquaredError'});

let batchSize = 32
// Train the model! Model.fit() will shuffle xs & ys
//so we don't have to.
model.fit(controllerDataset.xs, controllerDataset.ys,
 {
   batchSize,
   epochs: 10
});

将摄像头变成Pong控制器


你可能期望使用类似于Keras语法的图像进行预测。该图像首先被转换成图像特征,然后传递到经过训练的回归神经网络,该神经网络输出控制器值在-1到1之间。
// Capture the frame from the webcam.
const img = webcam.capture();

// Make a prediction through mobilenet, 
//getting the internal activation of
// the mobilenet model.
const activation = cnnNet.predict(img);

// Make a prediction through our newly-trained model
//using the activation
// from mobilenet as input.
const predictions = model.predict(activation);

// The predicted value between -1~1.
predictions.as1D();

一旦你对模型进行了训练,游戏开始运行,预测值就会通过这个调用 pong.updatePlayerSpeed(value) 来控制玩家paddle向左或向右移动的速度。你可以通过调用一下函数来启动和停止游戏:

pong.startGameplay():按下Play按钮该函数将被调用

pong.stopGameplay():按下Reset按钮该函数将被调用

可以通过调用 pong.updateMultiplier(multiplier) 来调整 paddle 运动的侵略性,在Pong类构造函数中,当前的multiplier值设置为12。

结论与探讨

在本教程中,你已经学习了如何在带有TensorFlow.js的浏览器上训练神经网络,并将你的网络摄像头转换为识别你的动作的Pong控制器。可以自由地查看我的源代码并对其进行实验、修改,比如激活函数、损失函数和切换另一个预训练模型等等,看看结果如何。用即时反馈在浏览器上训练神经网络的美妙之处,使我们能够更快地尝试新的想法,并为我们的原型获得更快的结果。

原文发布时间为:2018-07-30
本文作者:Chengwei Zhang
本文来自云栖社区合作伙伴“专知”,了解相关信息可以关注“专知

相关文章
|
18天前
|
机器学习/深度学习 PyTorch 算法框架/工具
目标检测实战(一):CIFAR10结合神经网络加载、训练、测试完整步骤
这篇文章介绍了如何使用PyTorch框架,结合CIFAR-10数据集,通过定义神经网络、损失函数和优化器,进行模型的训练和测试。
49 2
目标检测实战(一):CIFAR10结合神经网络加载、训练、测试完整步骤
|
2月前
|
机器学习/深度学习 算法 TensorFlow
动物识别系统Python+卷积神经网络算法+TensorFlow+人工智能+图像识别+计算机毕业设计项目
动物识别系统。本项目以Python作为主要编程语言,并基于TensorFlow搭建ResNet50卷积神经网络算法模型,通过收集4种常见的动物图像数据集(猫、狗、鸡、马)然后进行模型训练,得到一个识别精度较高的模型文件,然后保存为本地格式的H5格式文件。再基于Django开发Web网页端操作界面,实现用户上传一张动物图片,识别其名称。
83 1
动物识别系统Python+卷积神经网络算法+TensorFlow+人工智能+图像识别+计算机毕业设计项目
|
4天前
|
机器学习/深度学习 人工智能 算法
【车辆车型识别】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+算法模型
车辆车型识别,使用Python作为主要编程语言,通过收集多种车辆车型图像数据集,然后基于TensorFlow搭建卷积网络算法模型,并对数据集进行训练,最后得到一个识别精度较高的模型文件。再基于Django搭建web网页端操作界面,实现用户上传一张车辆图片识别其类型。
12 0
【车辆车型识别】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+算法模型
|
15天前
|
机器学习/深度学习 SQL 数据采集
基于tensorflow、CNN网络识别花卉的种类(图像识别)
基于tensorflow、CNN网络识别花卉的种类(图像识别)
14 1
|
2月前
|
机器学习/深度学习 人工智能 算法
鸟类识别系统Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+ResNet50算法模型+图像识别
鸟类识别系统。本系统采用Python作为主要开发语言,通过使用加利福利亚大学开源的200种鸟类图像作为数据集。使用TensorFlow搭建ResNet50卷积神经网络算法模型,然后进行模型的迭代训练,得到一个识别精度较高的模型,然后在保存为本地的H5格式文件。在使用Django开发Web网页端操作界面,实现用户上传一张鸟类图像,识别其名称。
92 12
鸟类识别系统Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+ResNet50算法模型+图像识别
|
17天前
|
机器学习/深度学习 人工智能 算法
【玉米病害识别】Python+卷积神经网络算法+人工智能+深度学习+计算机课设项目+TensorFlow+模型训练
玉米病害识别系统,本系统使用Python作为主要开发语言,通过收集了8种常见的玉米叶部病害图片数据集('矮花叶病', '健康', '灰斑病一般', '灰斑病严重', '锈病一般', '锈病严重', '叶斑病一般', '叶斑病严重'),然后基于TensorFlow搭建卷积神经网络算法模型,通过对数据集进行多轮迭代训练,最后得到一个识别精度较高的模型文件。再使用Django搭建Web网页操作平台,实现用户上传一张玉米病害图片识别其名称。
38 0
【玉米病害识别】Python+卷积神经网络算法+人工智能+深度学习+计算机课设项目+TensorFlow+模型训练
|
2月前
|
机器学习/深度学习 算法 TensorFlow
交通标志识别系统Python+卷积神经网络算法+深度学习人工智能+TensorFlow模型训练+计算机课设项目+Django网页界面
交通标志识别系统。本系统使用Python作为主要编程语言,在交通标志图像识别功能实现中,基于TensorFlow搭建卷积神经网络算法模型,通过对收集到的58种常见的交通标志图像作为数据集,进行迭代训练最后得到一个识别精度较高的模型文件,然后保存为本地的h5格式文件。再使用Django开发Web网页端操作界面,实现用户上传一张交通标志图片,识别其名称。
86 6
交通标志识别系统Python+卷积神经网络算法+深度学习人工智能+TensorFlow模型训练+计算机课设项目+Django网页界面
|
25天前
|
机器学习/深度学习 算法
【机器学习】揭秘反向传播:深度学习中神经网络训练的奥秘
【机器学习】揭秘反向传播:深度学习中神经网络训练的奥秘
|
2月前
|
机器学习/深度学习 数据采集 数据可视化
深度学习实践:构建并训练卷积神经网络(CNN)对CIFAR-10数据集进行分类
本文详细介绍如何使用PyTorch构建并训练卷积神经网络(CNN)对CIFAR-10数据集进行图像分类。从数据预处理、模型定义到训练过程及结果可视化,文章全面展示了深度学习项目的全流程。通过实际操作,读者可以深入了解CNN在图像分类任务中的应用,并掌握PyTorch的基本使用方法。希望本文为您的深度学习项目提供有价值的参考与启示。
|
3月前
|
开发者 图形学 API
从零起步,深度揭秘:运用Unity引擎及网络编程技术,一步步搭建属于你的实时多人在线对战游戏平台——详尽指南与实战代码解析,带你轻松掌握网络化游戏开发的核心要领与最佳实践路径
【8月更文挑战第31天】构建实时多人对战平台是技术与创意的结合。本文使用成熟的Unity游戏开发引擎,从零开始指导读者搭建简单的实时对战平台。内容涵盖网络架构设计、Unity网络API应用及客户端与服务器通信。首先,创建新项目并选择适合多人游戏的模板,使用推荐的网络传输层。接着,定义基本玩法,如2D多人射击游戏,创建角色预制件并添加Rigidbody2D组件。然后,引入网络身份组件以同步对象状态。通过示例代码展示玩家控制逻辑,包括移动和发射子弹功能。最后,设置服务器端逻辑,处理客户端连接和断开。本文帮助读者掌握构建Unity多人对战平台的核心知识,为进一步开发打下基础。
102 0