几乎零能耗零延迟!UCLA科学家发明光衍射神经网络,登上Science

简介: 深度学习,现在已经成立几乎每一个图像识别、语音识别、机器翻译系统的标配组件,而它的缺点也一直在被各界人士吐槽:不够快,太耗能,不可解释……

深度学习,现在已经成立几乎每一个图像识别、语音识别、机器翻译系统的标配组件,而它的缺点也一直在被各界人士吐槽:

不够快,太耗能,不可解释……


image

加州大学洛杉矶分校(UCLA)的一组科学家们,就要从另一个角度,来解决不够快和能耗高的问题。

UCLA电子工程系教授Aydogan Ozcan带着自己的团队,把神经网络从芯片上搬到了现实世界中,依靠光的传播,实现几乎零能耗、零延迟的深度学习。

这个解决方案叫做D2NN:衍射深度神经网络(Diffractive Deep Neural Network)。它是光学工具、3D打印和神经网络的结合。

他们的成果,登上了Science。


image


这个系统有着传统神经网络无法匹敌的优点:一是更快,在D2NN里,信息传递的速度,等于光速;二是能耗接近于0:除了最开始要提供一个光源之外,就不再需要耗电了。


image

D2NN由多个衍射层构成,一层上的每一个点都相当于神经网络的一个神经元。它的训练方式和深度学习一样,只不过得到的不是神经元的权重,而是神经元的透光/反射系数。

训练完成,得到D2NN的最终设计,就到了制造阶段。这些衍射层会被3D打印出来,在它学会的任务上做推断。

在推断过程中,在这个神经网络中传递的并不是人类可见的光,而是0.4太赫兹频率的单色光。Ozcan将D2NN比作用光来连接神经元、传递信息的实体大脑。

image

Ozcan团队在这项研究中,制造了不同类型的D2NN,有用来给图像分类的(上图B),有用来成像的(上图C)。

一个D2NN设计出来、打印完成后,还可以继续优化。

比如说,科学家们针对MNIST手写数字识别任务,训练了一个5层的D2NN,每一层的尺寸是8cm×8cm,达到了91.75%的准确率。

然后,他们又为这个D2NN加了两层,来优化性能。于是,这个7层网络在MNIST上的分类准确率达到了93.39%。

在比MNIST稍微复杂一些的基准数据集Fashion-MNIST上,5层的D2NN最高实现了86.33%的准确率。

当然,D2NN现在还只能算是个婴儿,和卷积神经网络现在动辄99%的准确率没法比。

接下来,Ozcan团队还打算制造尺寸更大、层数更多的D2NN。

说不定有一天,这种新型的神经网络强大起来,我们会对不需耗电就能识别人脸的摄像头习以为常。

论文在此:

http://innovate.ee.ucla.edu/wp-content/uploads/2018/07/2018-optical-ml-neural-network.pdf

原文发布时间为:2018-07-29
本文来自云栖社区合作伙伴“量子位”,了解相关信息可以关注“量子位”。

相关文章
|
分布式计算 监控 网络协议
Hadoop集群长时间运行网络延迟原因
【6月更文挑战第20天】
466 2
|
8月前
|
人工智能 边缘计算 5G
5G时代,别让能耗成为“隐形杀手”——聊聊5G网络的能耗管理
5G时代,别让能耗成为“隐形杀手”——聊聊5G网络的能耗管理
500 13
|
4月前
|
人工智能 监控 数据可视化
如何破解AI推理延迟难题:构建敏捷多云算力网络
本文探讨了AI企业在突破算力瓶颈后,如何构建高效、稳定的网络架构以支撑AI产品化落地。文章分析了典型AI IT架构的四个层次——流量接入层、调度决策层、推理服务层和训练算力层,并深入解析了AI架构对网络提出的三大核心挑战:跨云互联、逻辑隔离与业务识别、网络可视化与QoS控制。最终提出了一站式网络解决方案,助力AI企业实现多云调度、业务融合承载与精细化流量管理,推动AI服务高效、稳定交付。
|
算法 数据可视化 图形学
网络通信系统的voronoi图显示与能耗分析matlab仿真
在MATLAB2022a中,该程序模拟了两层基站网络,使用泊松分布随机生成Macro和Micro基站,并构建Voronoi图。它计算每个用户的信号强度,选择最强连接,并分析SINR和数据速率。程序还涉及能耗计算,包括传输、接收、处理和空闲能耗的分析。Voronoi图帮助可视化网络连接和优化能源效率。
|
域名解析 缓存 网络协议
优化Lua-cURL:减少网络请求延迟的实用方法
优化Lua-cURL:减少网络请求延迟的实用方法
|
网络协议 数据挖掘 5G
适用于金融和交易应用的低延迟网络:技术、架构与应用
适用于金融和交易应用的低延迟网络:技术、架构与应用
706 5
|
存储 网络协议 容灾
降低存储网络55% 延迟!阿里云存储论文入选计算机顶会
凭借在规模化部署和应用模型上的创新,阿里云存储团队发表的技术论文《Deploying User-space TCP at Cloud Scale with LUNA》被 USENIX ATC'23 收录。
1792 4
降低存储网络55% 延迟!阿里云存储论文入选计算机顶会
|
边缘计算 5G 数据处理
5G网络能耗管理:绿色通信的实践
【10月更文挑战第30天】
387 0
|
存储 网络协议 数据中心

热门文章

最新文章