从一个骗局谈生活中的基础算法

简介: 不会分析骗局的程序员不会分析基础算法。

曾经有一个著名的骗局:

小明是一个赌马爱好者,最近他连续几次提前收到了预测赌马结果的邮件,从一开始由于不屑而错失良机,到渐渐深信不疑,直到最后给邮件发送方汇了巨款才发现上当。

看过这个的人应该知道,骗子收集到一份邮件信息后,分组发送不同预测结果的邮件,赌马结果公布后,再将筛选出来的那部分人分组,继续发送下一轮预测邮件。几轮过后,肯定能保证一部分人收到的预测结果是完全正确的。这也是最关键的部分。

__20180730111642

那么骗子是如何从几万或几十万用户中寻找这些“幸运儿”的呢?这是一种二分法的思想。

假如要顺序在100万人中寻找一个人,最多需要100万次,而二分法只需要18次。

下面讲讲一些能够解决生活中一些具体问题的常用算法。

二分查找

对于一个长度为N的数组,简单查找最多需要N步;二分查找最多只需要logN步(约定底数为2)。

二分查找相较于简单查找,极大地提高了效率,但是二分查找的前提是列表是有序的,这也导致了诸多限制。

快速排序

D&C

D&C(divide and conquer)分而治之是一种重要的解决问题思路。当面对问题束手无策时,我们应该考虑一下:分而治之可以解决吗?
现在有一个问题,假如一块土地(1680*640)需要均匀地分为正方形,而且正方形的边长要尽量的大。该怎么分?

这个问题本质就是求两条边长的最大公因数。可以使用欧几里得算法(辗转相除)

快速排序
快速排序是一种常用的排序算法,比选择排序快得多(O(n^2)),快速排序也使用了D&C。

  1. 选择基准值
    2.将数组分成两个子数组:基准值左边的数组和基准值右边的数组

3.对这两个数组进行快速排序

快速排序的最糟情况是O(n^2),O(n^2)已经很慢了,为什么还要叫它快速排序呢?

快速排序的平均运行时间为O(nlogn),而合并排序的时间总是O(nlogn),合并排序似乎更有优势,那为什么不用合并排序呢?

因为大O表示法中的n是一个常量,当两种算法的时间复杂度不一样时,即使n在数值上不同,对总时间的影响很小,所以通常不考虑。

但有些时候,常量的影响很大,对快速排序和合并排序就是这样,快速排序的常量小得多,所以当这两种算法的时间复杂度都为O(nlogn)时,快速排序要快得多。而相较于最糟的情况,快速排序遇上平均情况的可能性更大,所以可以稍稍忽视这个问题。(快速排序最糟的情况下调用栈为O(n),在最佳情况下,调用栈长O(logn))

散列表

使用散列函数和数组可以构建散列表,散列表是包含额外逻辑的数据结构。
但是要编写出完美的散列函数几乎不可能,假如给两个键分配的空间相同的话就会出现冲突。如何处理冲突呢?最简单的办法是:假如在某一空间上产生冲突,就在这一空间后再加上一个链表。但是假如这个链表很长,会很影响查找的速度(链表只能顺序查找,查找时间为O(n))
所以一个能尽量避免冲突的散列函数是多么重要,那么怎么编写一个性能较高的散列表呢?
较低的填装因子(一旦填装因子大于0.7,就需要调整长度)
良好的散列函数(让数组中的值呈均匀分布,可以了解下SHA函数)

广度优先搜索
广度优先搜索能够解决两个问题:
两个节点之间是否存在相连的路径
最短的距离是多少?这个“最短距离”的含义有很多种。

想象这么一个问题:你想在你的微信好友和好友的好友中寻找是否有人是一名消防员,该如何查找?并且尽可能这人和你的关系更近些。

__20180730111646


迪克斯特拉算法

在图中,搜索最小的“段”数可以用广度优先算法,这就相当于默认每条边的权重是相同的,如果每条边的权重不同呢?那就需要用到迪克斯特拉算法。
概括来说,迪克斯特拉算法就是从起点开始,首先寻找最廉价的节点,更新其开销并标记为已处理,然然后在未处理的节点中寻找开销最小的节点,然后以此往复下去。
针对书中的这样一个问题,我把题干提取出来:目标是用乐谱换钢琴。现在乐谱可以免费换海报;海报加30元换吉他;海报加35元换架子鼓;乐谱加5元可以换唱片;唱片加15元换吉他;唱片加20元换架子鼓;吉他加20元换钢琴;架子鼓加10元换钢琴。
现在我用图把这个关系表示出来:

__20180730111653

可以看出这是一个加权图,现在我们要使用迪克斯特拉算法寻找最短路径。
最后的最低开销表为:
节点
开销

__20180730112142


父子节点表为:

父节点
子节点

__20180730112152

可以看出,最优的交换的路径为:piano-drum-record-music
最低开销为:35元

贝尔曼-福德算法

在迪克特拉斯算法的基础上,我们考虑这样一种情况,假如边的权重存在负值。
在迪克特拉斯算法中,我们首先寻找最廉价的节点,更新其开销,再寻找未处理节点中最廉价的节点,以此往复。
可能出现这样一个情况:

__20180730111659


在将海报标记为已处理后,开始处理唱片,但是唱片到海报的路径使得海报的开销更小,又将更新海报的开销,但是海报已经标记为已处理。那么就会出现一些问题。假如继续使用迪克特拉斯算法,最后的结果肯定是错的,大家可以更改参数试一下。为了正确解决问题,这时需要使用贝尔曼-福德算法。

贪心算法

对于一些比较复杂的问题,使用一些算法不能简单有效地解决,这时候往往会使用贪心算法:每步操作都选择局部最优解,最终得到的往往就是全局最优解。这似乎是想当然的做法,但是很多情况下真的行之有效。当然,贪心算法不适用于所有场景,但是他简单高效。因为很多情况并不需要追求完美,只要能找到大致解决问题的办法就行了。
假如我们面对这么一个问题:假设我开了一家网店,在全国各省都有生意,现在面临发快递的问题,假设现在的基础物流不是很完善,每家快运公司只能覆盖很少几个省,那么我该如何在覆盖全国34个省级行政区的情况下,选择最少的快运公司?

__20180730111702

这个问题看似不难,其实很复杂。
现在假设有n家快运公司,那么全部的组合有2^n种可能。
N
2^N

__20180730112155


可以看到,假如有50家快递公司,我将要考虑1125千亿种可能。可以看到,没有算法能很快的计算出这个问题,那么我们可以使用贪心算法,求局部最优解,然后将最终得到的视为全局最优解。
那么在这个问题下如何使用贪心算法?核心在于什么是局部最优条件?可以这样:
选择一家覆盖了最多未覆盖省的公司。
重复第一步。

原文发布时间为:2018-07-29
本文作者:数据与算法之美
本文来自云栖社区合作伙伴“数据与算法之美”,了解相关信息可以关注“数据与算法之美”。

相关文章
|
2月前
|
数据采集 机器学习/深度学习 人工智能
揭秘AI大模型的‘梦幻迷雾’:一场关于真实与虚假的智力较量,你能否穿透幻觉迷雾,窥见真相之光?
【10月更文挑战第13天】本文深入探讨了大模型幻觉的底层逻辑,分析了其产生的原因、表现形式及解决方案。从数据质量、模型复杂度、解码策略等方面解析幻觉成因,提出了提高数据质量、引入正则化技术、增强上下文理解等对策,旨在减少大模型生成不准确或虚假信息的风险。
74 1
运筹学总结—好不好总结就好
前段时间将运筹学进行完了第二遍学习——精读,其实这本书都在围绕选择最优方案这个主题展开了对于一些概念和示例的讲解。
|
决策智能
博弈论第十七集总结(“声誉和决斗 ”观后感)
博弈论第十七集总结(“声誉和决斗 ”观后感)
56 0
|
机器学习/深度学习 传感器 算法
中外专家共同论道 | 人脑与机器渐行渐近,脑机接口「黑科技」照进现实
中外专家共同论道 | 人脑与机器渐行渐近,脑机接口「黑科技」照进现实
141 0
|
程序员 决策智能
博弈论(一)——产品小哥哥的民主妙计
博弈论(一)——产品小哥哥的民主妙计
97 0
|
算法
基础算法练习200题09、水池注水
基础算法练习200题09、水池注水
169 0
基础算法练习200题09、水池注水
再学一道算法题: 食物链(带权并查集)
再学一道算法题: 食物链(带权并查集)
再学一道算法题: 食物链(带权并查集)
|
人工智能 算法
蓝桥杯-和最大子序列(算法提高)
蓝桥杯-和最大子序列(算法提高)
|
算法 量子技术
18岁天才华裔少年用一个经典算法,推翻量子加速神话!
一位年仅18岁的华裔少年提出了一种传统计算机AI算法,其运算速度可以与量子计算比肩,相对之前的传统算法实现了运算速度的指数级增长。这一发现不仅推翻了两位量子计算重量级人物的量子加速神话,而且证明了量子算法和经典算法研究之间存在富有成效的相互作用。
1674 0