完美数据迁移-MongoDB Stream的应用

本文涉及的产品
云数据库 MongoDB,独享型 2核8GB
推荐场景:
构建全方位客户视图
简介: 一、背景介绍 最近微服务架构火的不行,但本质上也只是风口上的一个热点词汇。作为笔者的经验来说,想要应用一个新的架构需要带来的变革成本是非常高的。 尽管如此,目前还是有许多企业踏上了服务化改造的道路,这其中则免不了"旧改"的各种繁杂事。

一、背景介绍

最近微服务架构火的不行,但本质上也只是风口上的一个热点词汇。
作为笔者的经验来说,想要应用一个新的架构需要带来的变革成本是非常高的。

尽管如此,目前还是有许多企业踏上了服务化改造的道路,这其中则免不了"旧改"的各种繁杂事。
所谓的"旧改",就是把现有的系统架构来一次重构,拆分成多个细粒度的服务后,然后找时间
升级割接一把,让新系统上线。这其中,数据的迁移往往会成为一个非常重要且繁杂的活儿。

拆分服务时数据迁移的挑战在哪?

  1. 首先是难度大,做一个迁移方案需要了解项目的前身今世,评估迁移方案、技术工具等等;
  2. 其次是成本高。由于新旧系统数据结构是不一样的,需要定制开发迁移转化功能。很难有一个通用的工具能一键迁移;
  3. 再者,对于一些容量大、可靠性要求高的系统,要能够不影响业务,出了问题还能追溯,因此方案上还得往复杂了想。

二、常见方案

按照迁移的方案及流程,可将数据迁移分为三类:

1. 停机迁移

最简单的方案,停机迁移的顺序如下:

采用停机迁移的好处是流程操作简单,工具成本低;然而缺点也很明显,
迁移过程中业务是无法访问的,因此只适合于规格小、允许停服的场景。

2. 业务双写

业务双写是指对现有系统先进行改造升级,支持同时对新库和旧库进行写入。
之后再通过数据迁移工具对旧数据做全量迁移,待所有数据迁移转换完成后切换到新系统。

示意图:

业务双写的方案是平滑的,对线上业务影响极小;在出现问题的情况下可重新来过,操作压力也会比较小。

笔者在早些年前尝试过这样的方案,整个迁移过程确实非常顺利,但实现该方案比较复杂,
需要对现有的代码进行改造并完成新数据的转换及写入,对于开发人员的要求较高。
在业务逻辑清晰、团队对系统有足够的把控能力的场景下适用。

3. 增量迁移

增量迁移的基本思路是先进行全量的迁移转换,待完成后持续进行增量数据的处理,直到数据追平后切换系统。

示意图:

关键点

  • 要求系统支持增量数据的记录。
    对于MongoDB可以利用oplog实现这点,为避免全量迁移过程中oplog被冲掉,

在开始迁移前就必须开始监听oplog,并将变更全部记录下来。
如果没有办法,需要从应用层上考虑,比如为所有的表(集合)记录下updateTime这样的时间戳,
或者升级应用并支持将修改操作单独记录下来。

  • 增量数据的回放是持续的。
    在所有的增量数据回放转换过程中,系统仍然会产生新的增量数据,这要求迁移工具

能做到将增量数据持续回放并将之追平,之后才能做系统切换。

MongoDB 3.6版本开始便提供了Change Stream功能,支持对数据变更记录做监听。

这为实现数据同步及转换处理提供了更大的便利,下面将探讨如何利用Change Stream实现数据的增量迁移。

三、Change Stream 介绍

Chang Stream(变更记录流) 是指collection(数据库集合)的变更事件流,应用程序通过db.collection.watch()这样的命令可以获得被监听对象的实时变更。

在该特性出现之前,你可以通过拉取 oplog达到同样的目的;但 oplog 的处理及解析相对复杂且存在被回滚的风险,如果使用不当的话还会带来性能问题。

Change Stream 可以与aggregate framework结合使用,对变更集进行进一步的过滤或转换。

*由于Change Stream 利用了存储在 oplog 中的信息,因此对于单进程部署的MongoDB无法支持Change Stream功能,
其只能用于启用了副本集的独立集群或分片集群*

监听的目标

名称 说明
单个集合 除系统库(admin/local/config)之外的集合,3.6版本支持
单个数据库 除系统库(admin/local/config)之外的数据库集合,4.0版本支持
整个集群 整个集群内除去系统库( (admin/local/config)之外的集合 ,4.0版本支持

变更事件

一个Change Stream Event的基本结构如下所示:

{
   _id : { <BSON Object> },
   "operationType" : "<operation>",
   "fullDocument" : { <document> },
   "ns" : {
      "db" : "<database>",
      "coll" : "<collection"
   },
   "documentKey" : { "_id" : <ObjectId> },
   "updateDescription" : {
      "updatedFields" : { <document> },
      "removedFields" : [ "<field>", ... ]
   }
   "clusterTime" : <Timestamp>,
   "txnNumber" : <NumberLong>,
   "lsid" : {
      "id" : <UUID>,
      "uid" : <BinData>
   }
}
AI 代码解读

字段说明

名称 说明
_id 变更事件的Token对象
operationType 变更类型(见下面介绍)
fullDocument 文档内容
ns 监听的目标
ns.db 变更的数据库
ns.coll 变更的集合
documentKey 变更文档的键值,含_id字段
updateDescription 变更描述
updateDescription.updatedFields 变更中更新字段
updateDescription.removedFields 变更中删除字段
clusterTime 对应oplog的时间戳
txnNumber 事务编号,仅在多文档事务中出现,4.0版本支持
lsid 事务关联的会话编号,仅在多文档事务中出现,4.0版本支持

Change Steram支持的变更类型有以下几个:

类型 说明
insert 插入文档
delete 删除文档
replace 替换文档,当执行replace操作指定upsert时,可能是insert事件
update 更新文档,当执行update操作指定upsert时,可能是insert事件
invalidate 失效事件,比如执行了collection.drop或collection.rename

利用以下的shell脚本,可以打印出集合 T_USER上的变更事件:

watchCursor=db.T_USER.watch()
while (!watchCursor.isExhausted()){
   if (watchCursor.hasNext()){
      printjson(watchCursor.next());
   }
}
AI 代码解读

下面提供一些样例,感受一下

insert 事件

{
    "_id": {
        "_data": "825B5826D10000000129295A10046A31C593902B4A9C9907FC0AB1E3C0DA46645F696400645B58272321C4761D1338F4860004"
    },
    "operationType": "insert",
    "clusterTime": Timestamp(1532503761, 1),
    "fullDocument": {
        "_id": ObjectId("5b58272321c4761d1338f486"),
        "name": "LiLei",
        "createTime": ISODate("2018-07-25T07:30:43.398Z")
    },
    "ns": {
        "db": "appdb",
        "coll": "T_USER"
    },
    "documentKey": {
        "_id": ObjectId("5b58272321c4761d1338f486")
    }
}
AI 代码解读

update事件

{
 "_id" : {
  "_data" : "825B5829DF0000000129295A10046A31C593902B4A9C9907FC0AB1E3C0DA46645F696400645B582980ACEC5F345DB998EE0004"
 },
 "operationType" : "update",
 "clusterTime" : Timestamp(1532504543, 1),
 "ns" : {
  "db" : "appdb",
  "coll" : "T_USER"
 },
 "documentKey" : {
  "_id" : ObjectId("5b582980acec5f345db998ee")
 },
 "updateDescription" : {
  "updatedFields" : {
   "age" : 15
  },
  "removedFields" : [ ]
 }
}
AI 代码解读

replace事件

{
    "_id" : {
        "_data" : "825B58299D0000000129295A10046A31C593902B4A9C9907FC0AB1E3C0DA46645F696400645B582980ACEC5F345DB998EE0004"
    },
    "operationType" : "replace",
    "clusterTime" : Timestamp(1532504477, 1),
    "fullDocument" : {
        "_id" : ObjectId("5b582980acec5f345db998ee"),
        "name" : "HanMeimei",
        "age" : 12
    },
    "ns" : {
        "db" : "appdb",
        "coll" : "T_USER"
    },
    "documentKey" : {
        "_id" : ObjectId("5b582980acec5f345db998ee")
    }
}
AI 代码解读

delete事件

{
    "_id" : {
        "_data" : "825B5827A90000000229295A10046A31C593902B4A9C9907FC0AB1E3C0DA46645F696400645B58272321C4761D1338F4860004"
    },
    "operationType" : "delete",
    "clusterTime" : Timestamp(1532503977, 2),
    "ns" : {
        "db" : "appdb",
        "coll" : "T_USER"
    },
    "documentKey" : {
        "_id" : ObjectId("5b58272321c4761d1338f486")
    }
}
AI 代码解读

invalidate 事件
执行db.T_USER.drop() 可输出

{
    "_id" : {
        "_data" : "825B582D620000000329295A10046A31C593902B4A9C9907FC0AB1E3C0DA04"
    },
    "operationType" : "invalidate",
    "clusterTime" : Timestamp(1532505442, 3)
}
AI 代码解读

更多的Change Event 信息可以参考这里

四、实现增量迁移

本次设计了一个简单的论坛帖子迁移样例,用于演示如何利用Change Stream实现完美的增量迁移方案。
背景如下:
现有的系统中有一批帖子,每个帖子都属于一个频道(channel),如下表

频道名 英文简称
美食 Food
情感 Emotion
宠物 Pet
家居 House
征婚 Marriage
教育 Education
旅游 Travel

新系统中频道字段将采用英文简称,同时要求能支持平滑升级。
根据前面篇幅的叙述,我们将使用Change Stream 功能实现一个增量迁移的方案。

相关表的转换如下图:

原理
topic 是帖子原表,在迁移开始前将开启watch任务持续获得增量数据,并记录到 topic_incr表中;
接着执行全量的迁移转换,之后再持续对增量表数据进行迁移,直到无新的增量为止。

接下来我们使用Java程序来完成相关代码,mongodb-java--driver 在 3.6 版本后才支持 watch 功能
需要确保升级到对应版本:

<dependency>
     <groupId>org.mongodb</groupId>
     <artifactId>mongo-java-driver</artifactId>
     <version>3.6.4</version>
</dependency>
AI 代码解读
  1. 定义Channel频道的转换表
public static enum Channel {
    Food("美食"),
    Emotion("情感"),
    Pet("宠物"),
    House("家居"),
    Marriage("征婚"),
    Education("教育"),
    Travel("旅游")
    ;
    private final String oldName;

    public String getOldName() {
        return oldName;
    }

    private Channel(String oldName) {
        this.oldName = oldName;
    }

    /**
     * 转换为新的名称
     * 
     * @param oldName
     * @return
     */
    public static String toNewName(String oldName) {
        for (Channel channel : values()) {
            if (channel.oldName.equalsIgnoreCase(oldName)) {
                return channel.name();
            }
        }
        return "";
    }

    /**
     * 返回一个随机频道
     * 
     * @return
     */
    public static Channel random() {
        Channel[] channels = values();
        int idx = (int) (Math.random() * channels.length);
        return channels[idx];
    }
}
AI 代码解读
  1. 为 topic 表预写入1w条记录
private static void preInsertData() {
    MongoCollection<Document> topicCollection = getCollection(coll_topic);

    // 分批写入,共写入1w条数据
    int current = 0;
    int batchSize = 100;

    while (current < 10000) {
        List<Document> topicDocs = new ArrayList<Document>();

        for (int j = 0; j < batchSize; j++) {
            Document topicDoc = new Document();

            Channel channel = Channel.random();
            topicDoc.append(field_channel, channel.getOldName());
            topicDoc.append(field_nonce, (int) (Math.random() * nonce_max));

            topicDoc.append("title", "This is the tilte -- " + UUID.randomUUID().toString());
            topicDoc.append("author", "LiLei");
            topicDoc.append("createTime", new Date());
            topicDocs.add(topicDoc);
        }

        topicCollection.insertMany(topicDocs);
        current += batchSize;
        logger.info("now has insert {} records", current);
    }
}
AI 代码解读

上述实现中,每个帖子都分配了随机的频道(channel)

  1. 开启监听任务,将topic上的所有变更写入到增量表
MongoCollection<Document> topicCollection = getCollection(coll_topic);
MongoCollection<Document> topicIncrCollection = getCollection(coll_topic_incr);

// 启用 FullDocument.update_lookup 选项
cursor = topicCollection.watch().fullDocument(FullDocument.UPDATE_LOOKUP).iterator();
while (cursor.hasNext()) {

    ChangeStreamDocument<Document> changeEvent = cursor.next();
    OperationType type = changeEvent.getOperationType();
    logger.info("{} operation detected", type);

    if (type == OperationType.INSERT || type == OperationType.UPDATE || type == OperationType.REPLACE
            || type == OperationType.DELETE) {

        Document incrDoc = new Document(field_op, type.getValue());
        incrDoc.append(field_key, changeEvent.getDocumentKey().get("_id"));
        incrDoc.append(field_data, changeEvent.getFullDocument());
        topicIncrCollection.insertOne(incrDoc);
    }
}
AI 代码解读

代码中通过watch 命令获得一个MongoCursor对象,用于遍历所有的变更。
FullDocument.UPDATE_LOOKUP选项启用后,在update变更事件中将携带完整的文档数据(FullDocument)。

watch()命令提交后,mongos会与分片上的mongod(主节点)建立订阅通道,这可能需要花费一点时间。

  1. 为了模拟线上业务的真实情况,启用几个线程对topic表进行持续写操作;
private static void startMockChanges() {

    threadPool.submit(new ChangeTask(OpType.insert));
    threadPool.submit(new ChangeTask(OpType.update));
    threadPool.submit(new ChangeTask(OpType.replace));
    threadPool.submit(new ChangeTask(OpType.delete));
}
AI 代码解读

ChangeTask 实现逻辑如下:

while (true) {
    logger.info("ChangeTask {}", opType);
    if (opType == OpType.insert) {
        doInsert();
    } else if (opType == OpType.update) {
        doUpdate();
    } else if (opType == OpType.replace) {
        doReplace();
    } else if (opType == OpType.delete) {
        doDelete();
    }
    sleep(200);
    long currentAt = System.currentTimeMillis();
    if (currentAt - startAt > change_during) {
        break;
    }
}
AI 代码解读

每一个变更任务会不断对topic产生写操作,触发一系列ChangeEvent产生。

  • doInsert:生成随机频道的topic后,执行insert
  • doUpdate:随机取得一个topic,将其channel字段改为随机值,执行update
  • doReplace:随机取得一个topic,将其channel字段改为随机值,执行replace
  • doDelete:随机取得一个topic,执行delete

doUpdate为例,实现代码如下:

private void doUpdate() {
    MongoCollection<Document> topicCollection = getCollection(coll_topic);

    Document random = getRandom();
    if (random == null) {
        logger.info("update skip");
        return;
    }

    String oldChannel = random.getString(field_channel);
    Channel channel = Channel.random();

    random.put(field_channel, channel.getOldName());
    random.put("createTime", new Date());
    topicCollection.updateOne(new Document("_id", random.get("_id")), new Document("$set", random));

    counter.onChange(oldChannel, channel.getOldName());
}
AI 代码解读
  1. 启动一个全量迁移任务,将 topic 表中数据迁移到 topic_new 新表
final MongoCollection<Document> topicCollection = getCollection(coll_topic);
final MongoCollection<Document> topicNewCollection = getCollection(coll_topic_new);

Document maxDoc = topicCollection.find().sort(new Document("_id", -1)).first();
if (maxDoc == null) {
    logger.info("FullTransferTask detect no data, quit.");
    return;
}

ObjectId maxID = maxDoc.getObjectId("_id");
logger.info("FullTransferTask maxId is {}..", maxID.toHexString());

AtomicInteger count = new AtomicInteger(0);

topicCollection.find(new Document("_id", new Document("$lte", maxID)))
        .forEach(new Consumer<Document>() {

            @Override
            public void accept(Document topic) {
                Document topicNew = new Document(topic);
                // channel转换
                String oldChannel = topic.getString(field_channel);
                topicNew.put(field_channel, Channel.toNewName(oldChannel));

                topicNewCollection.insertOne(topicNew);
                if (count.incrementAndGet() % 100 == 0) {
                    logger.info("FullTransferTask progress: {}", count.get());
                }
            }

        });
logger.info("FullTransferTask finished, count: {}", count.get());
AI 代码解读

在全量迁移开始前,先获得当前时刻的的最大 _id 值(可以将此值记录下来)作为终点。
随后逐个完成迁移转换。

  1. 在全量迁移完成后,便开始最后一步:增量迁移

注:增量迁移过程中,变更操作仍然在进行

final MongoCollection<Document> topicIncrCollection = getCollection(coll_topic_incr);
final MongoCollection<Document> topicNewCollection = getCollection(coll_topic_new);

ObjectId currentId = null;
Document sort = new Document("_id", 1);
MongoCursor<Document> cursor = null;

// 批量大小
int batchSize = 100;
AtomicInteger count = new AtomicInteger(0);

try {
    while (true) {

        boolean isWatchTaskStillRunning = watchFlag.getCount() > 0;

        // 按ID增量分段拉取
        if (currentId == null) {
            cursor = topicIncrCollection.find().sort(sort).limit(batchSize).iterator();
        } else {
            cursor = topicIncrCollection.find(new Document("_id", new Document("$gt", currentId)))
                    .sort(sort).limit(batchSize).iterator();
        }

        boolean hasIncrRecord = false;

        while (cursor.hasNext()) {
            hasIncrRecord = true;

            Document incrDoc = cursor.next();

            OperationType opType = OperationType.fromString(incrDoc.getString(field_op));
            ObjectId docId = incrDoc.getObjectId(field_key);

            // 记录当前ID
            currentId = incrDoc.getObjectId("_id");

            if (opType == OperationType.DELETE) {

                topicNewCollection.deleteOne(new Document("_id", docId));
            } else {

                Document doc = incrDoc.get(field_data, Document.class);

                // channel转换
                String oldChannel = doc.getString(field_channel);
                doc.put(field_channel, Channel.toNewName(oldChannel));

                // 启用upsert
                UpdateOptions options = new UpdateOptions().upsert(true);

                topicNewCollection.replaceOne(new Document("_id", docId),
                        incrDoc.get(field_data, Document.class), options);
            }

            if (count.incrementAndGet() % 10 == 0) {
                logger.info("IncrTransferTask progress, count: {}", count.get());
            }
        }

        // 当watch停止工作(没有更多变更),同时也没有需要处理的记录时,跳出
        if (!isWatchTaskStillRunning && !hasIncrRecord) {
            break;
        }

        sleep(200);
    }
} catch (Exception e) {
    logger.error("IncrTransferTask ERROR", e);
}
AI 代码解读

增量迁移的实现是一个不断 tail 的过程,利用 _id 字段的有序特性 进行分段迁移;
即记录下当前处理的 _id 值,循环拉取在 该 _id 值之后的记录进行处理。

增量表(topic_incr)中除了DELETE变更之外,其余的类型都保留了整个文档,
因此可直接利用 replace + upsert 追加到新表。

  1. 最后,运行整个程序
[2018-07-26 19:44:16] INFO ~ IncrTransferTask progress, count: 2160
[2018-07-26 19:44:16] INFO ~ IncrTransferTask progress, count: 2170
[2018-07-26 19:44:27] INFO ~ all change task has stop, watch task quit.
[2018-07-26 19:44:27] INFO ~ IncrTransferTask finished, count: 2175
[2018-07-26 19:44:27] INFO ~ TYPE 美食:1405
[2018-07-26 19:44:27] INFO ~ TYPE 宠物:1410
[2018-07-26 19:44:27] INFO ~ TYPE 征婚:1428
[2018-07-26 19:44:27] INFO ~ TYPE 家居:1452
[2018-07-26 19:44:27] INFO ~ TYPE 教育:1441
[2018-07-26 19:44:27] INFO ~ TYPE 情感:1434
[2018-07-26 19:44:27] INFO ~ TYPE 旅游:1457
[2018-07-26 19:44:27] INFO ~ ALLCHANGE 12175
[2018-07-26 19:44:27] INFO ~ ALLWATCH 2175
AI 代码解读

查看 topic 表和 topic_new 表,发现两者数量是相同的。
为了进一步确认一致性,我们对两个表的分别做一次聚合统计:

topic表

db.topic.aggregate([{
    "$group":{
        "_id":"$channel",
        "total": {"$sum": 1}
        }
    },
    {
        "$sort": {"total":-1}
        }
    ])
AI 代码解读

topic_new表

db.topic_new.aggregate([{
    "$group":{
        "_id":"$channel",
        "total": {"$sum": 1}
        }
    },
    {
        "$sort": {"total":-1}
        }
    ])
AI 代码解读

前者输出结果:

后者输出结果:

前后对比的结果是一致的!

五、后续优化

前面的章节演示了一个增量迁移的样例,在投入到线上运行之前,这些代码还得继续优化:

  • 写入性能,线上的数据量可能会达到亿级,在全量、增量迁移时应采用合理的批量化处理;
    另外可以通过增加并发线程,添置更多的Worker,分别对不同业务库、不同表进行处理以提升效率。

增量表存在幂等性,即回放多次其最终结果还是一致的,但需要保证表级有序,即一个表同时只有一个线程在进行增量回放。

  • 容错能力,一旦 watch 监听任务出现异常,要能够从更早的时间点开始(使用startAtOperationTime参数),
    而如果写入时发生失败,要支持重试。
  • 回溯能力,做好必要的跟踪记录,比如将转换失败的ID号记录下来,旧系统的数据需要保留,
    以免在事后追究某个数据问题时找不着北。
  • 数据转换,新旧业务的差异不会很简单,通常需要借助大量的转换表来完成。
  • 一致性检查,需要根据业务特点开发自己的一致性检查工具,用来证明迁移后数据达到想要的一致性级别。

BTW,数据迁移一定要结合业务特性、架构差异来做考虑,否则还是在耍流氓。

小结

服务化系统中扩容、升级往往会进行数据迁移,对于业务量大,中断敏感的系统通常会采用平滑迁移的方式。
MongoDB 3.6 版本后提供了 Change Stream 功能以支持应用订阅数据的变更事件流,
本文使用 Stream 功能实现了增量平滑迁移的例子,这是一次尝试,相信后续这样的应用场景会越来越多。
欢迎关注"美码师的公众号" -- 唯美食与技术不可辜负" ,期待更多精彩内容^-^

附参考文档

百亿级数据迁移-58沈剑
MongoDB-ChangeStream
Use-ChangeStream To Handle Temperature

原文链接:https://www.cnblogs.com/littleatp/p/8419744.html

相关实践学习
MongoDB数据库入门
MongoDB数据库入门实验。
快速掌握 MongoDB 数据库
本课程主要讲解MongoDB数据库的基本知识,包括MongoDB数据库的安装、配置、服务的启动、数据的CRUD操作函数使用、MongoDB索引的使用(唯一索引、地理索引、过期索引、全文索引等)、MapReduce操作实现、用户管理、Java对MongoDB的操作支持(基于2.x驱动与3.x驱动的完全讲解)。 通过学习此课程,读者将具备MongoDB数据库的开发能力,并且能够使用MongoDB进行项目开发。 &nbsp; 相关的阿里云产品:云数据库 MongoDB版 云数据库MongoDB版支持ReplicaSet和Sharding两种部署架构,具备安全审计,时间点备份等多项企业能力。在互联网、物联网、游戏、金融等领域被广泛采用。 云数据库MongoDB版(ApsaraDB for MongoDB)完全兼容MongoDB协议,基于飞天分布式系统和高可靠存储引擎,提供多节点高可用架构、弹性扩容、容灾、备份回滚、性能优化等解决方案。 产品详情: https://www.aliyun.com/product/mongodb
目录
打赏
0
0
0
0
929
分享
相关文章
MongoDB 是什么?有哪些应用场景?
MongoDB 是一个由 MongoDB Inc. 开发的基于分布式文件存储的面向文档的数据库,自 2009 年推出以来,以其高性能、易部署、模式自由、强大的查询语言和出色的可扩展性受到广泛欢迎。它适用于互联网应用、日志分析、缓存、地理信息系统等多种场景。MongoDB 支持多种编程语言,并提供了丰富的社区支持,便于开发者快速上手。结合板栗看板等工具,MongoDB 可进一步提升数据存储、分析和同步的效率,支持个性化功能实现,助力团队协作和项目管理。
|
1月前
|
探索MongoDB:发展历程、优势与应用场景
MongoDB 是一个开源的文档型数据库,由 DoubleClick 团队于2007年创立,旨在解决传统数据库的扩展性和灵活性问题。它支持 JSON 格式的存储和查询,具备高可用性、高扩展性和灵活性等优势。MongoDB 适用于社交、物联网、视频直播和内容管理等多种场景,并被阿里巴巴、腾讯等一线互联网公司广泛使用。其主要版本包括 MongoDB Atlas(云服务)、MongoDB Enterprise Advanced(商业版)和 MongoDB Community Edition(免费版)。自2009年发布1.0版本以来,MongoDB 不断创新,最新版本为7.0,在性能和功能上持续优化。
80 12
使用NimoShake将数据从AWS DynamoDB迁移至阿里云MongoDB
使用NimoShake将数据从AWS DynamoDB迁移至阿里云MongoDB
|
4月前
|
MongoDB以其独特的优势和广泛的应用场景
MongoDB以其独特的优势和广泛的应用场景
135 8
|
4月前
|
MongoDB的应用场景非常广泛
MongoDB的应用场景非常广泛
173 6
这些案例展示了MongoDB在不同行业中的广泛应用
这些案例展示了MongoDB在不同行业中的广泛应用
253 4
MongoDB在多个行业有广泛应用
MongoDB在多个行业有广泛应用
126 4
|
3月前
|
MongoDB在不同行业中的广泛应用
MongoDB在不同行业中的广泛应用
178 3
MongoDB在哪些领域有应用?
MongoDB在哪些领域有应用?
159 3
使用 Node.js 和 MongoDB 构建实时聊天应用
【10月更文挑战第2天】使用 Node.js 和 MongoDB 构建实时聊天应用
AI助理

你好,我是AI助理

可以解答问题、推荐解决方案等