[Java 安全]消息摘要与数字签名

本文涉及的产品
密钥管理服务KMS,1000个密钥,100个凭据,1个月
简介: 消息摘要 算法简述 定义 它是一个唯一对应一个消息或文本的固定长度的值,它由一个单向Hash加密函数对消息进行作用而产生。如果消息在途中改变了,则接收者通过对收到消息的新产生的摘要与原摘要比较,就可知道消息是否被改变了。

消息摘要

算法简述

定义

它是一个唯一对应一个消息或文本的固定长度的值,它由一个单向Hash加密函数对消息进行作用而产生。如果消息在途中改变了,则接收者通过对收到消息的新产生的摘要与原摘要比较,就可知道消息是否被改变了。因此消息摘要保证了消息的完整性。消息摘要采用单向Hash 函数将需加密的明文"摘要"成一串密文,这一串密文亦称为数字指纹(Finger Print)。它有固定的长度,且不同的明文摘要成密文,其结果总是不同的,而同样的明文其摘要必定一致。这样这串摘要便可成为验证明文是否是"真身""指纹"了。

 

特点

消息摘要具有以下特点:

(1)        唯一性:数据只要有一点改变,那么再通过消息摘要算法得到的摘要也会发生变化。虽然理论上有可能会发生碰撞,但是概率极其低。

(2)        不可逆:消息摘要算法的密文无法被解密。

(3)        不需要密钥,可使用于分布式网络。

(4)        无论输入的明文有多长,计算出来的消息摘要的长度总是固定的。

 

原理

消息摘要,其实就是将需要摘要的数据作为参数,经过哈希函数(Hash)的计算,得到的散列值。

 

常用算法

消息摘要算法包括MD(Message Digest,消息摘要算法)SHA(Secure Hash Algorithm,安全散列算法)MAC(Message AuthenticationCode,消息认证码算法)3大系列,常用于验证数据的完整性,是数字签名算法的核心算法。

MD5SHA1分别是MDSHA算法系列中最有代表性的算法。

如今,MD5已被发现有许多漏洞,从而不再安全。SHA算法比MD算法的摘要长度更长,也更加安全。

 

算法实现

MD5SHA的范例

JDK中使用MD5SHA这两种消息摘要的方式基本一致,步骤如下:

(1)            初始化MessageDigest对象

(2)            更新要计算的内容

(3)            生成摘要

importjava.io.UnsupportedEncodingException;
import 
java.security.MessageDigest;
import 
java.security.NoSuchAlgorithmException;

import 
org.apache.commons.codec.binary.Base64;

public class 
MsgDigestDemo{
    
public static void main(String args[]) throws NoSuchAlgorithmExceptionUnsupportedEncodingException {
        String msg = 
"Hello World!";

        
MessageDigest md5Digest = MessageDigest.getInstance("MD5");
        
// 更新要计算的内容
        
md5Digest.update(msg.getBytes());
        
// 完成哈希计算,得到摘要
        
byte[] md5Encoded = md5Digest.digest();

        
MessageDigest shaDigest = MessageDigest.getInstance("SHA");
        
// 更新要计算的内容
        
shaDigest.update(msg.getBytes());
        
// 完成哈希计算,得到摘要
        
byte[] shaEncoded = shaDigest.digest();

        
System.out.println("原文: " + msg);
        
System.out.println("MD5摘要: " + Base64.encodeBase64URLSafeString(md5Encoded));
        
System.out.println("SHA摘要: " + Base64.encodeBase64URLSafeString(shaEncoded));
    
}
}

结果:

原文:Hello World!
MD5摘要: 
7Qdih1MuhjZehB6Sv8UNjA
SHA
摘要:Lve95gjOVATpfV8EL5X4nxwjKHE

 

HMAC的范例

importjavax.crypto.Mac;
import 
javax.crypto.spec.SecretKeySpec;

import 
org.apache.commons.codec.binary.Base64;

public class 
HmacCoder{
    
/**
     * JDK
支持HmacMD5, HmacSHA1,HmacSHA256, HmacSHA384, HmacSHA512
     */
    
public enum HmacTypeEn {
        
HmacMD5HmacSHA1HmacSHA256HmacSHA384HmacSHA512;
    
}

    
public static byte[] encode(byte[] plaintext, byte[] secretKeyHmacTypeEn type) throwsException {
        SecretKeySpec keySpec = 
new SecretKeySpec(secretKeytype.name());
        
Mac mac = Mac.getInstance(keySpec.getAlgorithm());
        
mac.init(keySpec);
        return 
mac.doFinal(plaintext);
    
}

    
public static void main(String[] args) throws Exception {
        String msg = 
"Hello World!";
        byte
[] secretKey = "Secret_Key".getBytes("UTF8");
        byte
[] digest = HmacCoder.encode(msg.getBytes()secretKeyHmacTypeEn.HmacSHA256);
        
System.out.println("原文: " + msg);
        
System.out.println("摘要: " + Base64.encodeBase64URLSafeString(digest));
    
}
}

结果:

原文:Hello World!
摘要: b8-eUifaOJ5OUFweOoq08HbGAMsIpC3Nt-Yv-S91Yr4

 

 

数字签名

算法简述

数字签名算法可以看做是一种带有密钥的消息摘要算法,并且这种密钥包含了公钥和私钥。也就是说,数字签名算法是非对称加密算法和消息摘要算法的结合体。

 

特点

数字签名算法要求能够验证数据完整性、认证数据来源,并起到抗否认的作用。

 

原理

数字签名算法包含签名和验证两项操作,遵循私钥签名,公钥验证的方式。

签名时要使用私钥和待签名数据,验证时则需要公钥、签名值和待签名数据,其核心算法主要是消息摘要算法。

 

常用算法

RSADSAECDSA

 

算法实现

DSA的范例

数字签名有两个流程:签名和验证。

它们的前提都是要有一个公钥、密钥对。

签名

用私钥为消息计算签名

 

验证

用公钥验证摘要

importjava.security.KeyFactory;
import 
java.security.KeyPair;
import 
java.security.KeyPairGenerator;
import 
java.security.PrivateKey;
import 
java.security.PublicKey;
import 
java.security.Signature;
import 
java.security.spec.PKCS8EncodedKeySpec;
import 
java.security.spec.X509EncodedKeySpec;

import 
org.apache.commons.codec.binary.Base64;

public class 
DsaCoder{
    
public static final String KEY_ALGORITHM "DSA";

    public enum 
DsaTypeEn {
        
MD5withDSASHA1withDSA
    }

    
/**
     * DSA
密钥长度默认1024位。 密钥长度必须是64的整数倍,范围在512~1024之间
     */
    
private static final int KEY_SIZE 1024;

    private 
KeyPair keyPair;

    public 
DsaCoder() throws Exception {
        
keyPair = initKey();
    
}

    
public byte[] signature(byte[] data, byte[] privateKey) throws Exception {
        PKCS8EncodedKeySpec keySpec = 
new PKCS8EncodedKeySpec(privateKey);
        
KeyFactory keyFactory = KeyFactory.getInstance(KEY_ALGORITHM);
        
PrivateKey key =keyFactory.generatePrivate(keySpec);

        
Signature signature = Signature.getInstance(DsaTypeEn.SHA1withDSA.name());
        
signature.initSign(key);
        
signature.update(data);
        return 
signature.sign();
    
}

    
public boolean verify(byte[] data, byte[] publicKey, byte[] sign) throws Exception {
        X509EncodedKeySpec keySpec = 
new X509EncodedKeySpec(publicKey);
        
KeyFactory keyFactory = KeyFactory.getInstance(KEY_ALGORITHM);
        
PublicKey key =keyFactory.generatePublic(keySpec);

        
Signature signature = Signature.getInstance(DsaTypeEn.SHA1withDSA.name());
        
signature.initVerify(key);
        
signature.update(data);
        return 
signature.verify(sign);
    
}

    
private KeyPair initKey() throws Exception {
        
// 初始化密钥对生成器
        
KeyPairGenerator keyPairGen = KeyPairGenerator.getInstance(KEY_ALGORITHM);
        
// 实例化密钥对生成器
        
keyPairGen.initialize(KEY_SIZE);
        
// 实例化密钥对
        
return keyPairGen.genKeyPair();
    
}

    
public byte[] getPublicKey() {
        
return keyPair.getPublic().getEncoded();
    
}

    
public byte[] getPrivateKey() {
        
return keyPair.getPrivate().getEncoded();
    
}

    
public static void main(String[] args) throws Exception {
        String msg = 
"Hello World";
        
DsaCoder dsa = new DsaCoder();
        byte
[] sign = dsa.signature(msg.getBytes()dsa.getPrivateKey());
        boolean 
flag = dsa.verify(msg.getBytes()dsa.getPublicKey()sign);
        
String result = flag ? "数字签名匹配" "数字签名不匹配";
        
System.out.println("数字签名:" + Base64.encodeBase64URLSafeString(sign));
        
System.out.println("验证结果:" + result);
    
}
}

 

参考

Core Java Volume2

Java加密与解密技术》

目录
相关文章
|
1月前
|
SQL 安全 Java
安全问题已经成为软件开发中不可忽视的重要议题。对于使用Java语言开发的应用程序来说,安全性更是至关重要
在当今网络环境下,Java应用的安全性至关重要。本文深入探讨了Java安全编程的最佳实践,包括代码审查、输入验证、输出编码、访问控制和加密技术等,帮助开发者构建安全可靠的应用。通过掌握相关技术和工具,开发者可以有效防范安全威胁,确保应用的安全性。
51 4
|
20天前
|
SQL 安全 Java
Java 异常处理:筑牢程序稳定性的 “安全网”
本文深入探讨Java异常处理,涵盖异常的基础分类、处理机制及最佳实践。从`Error`与`Exception`的区分,到`try-catch-finally`和`throws`的运用,再到自定义异常的设计,全面解析如何有效管理程序中的异常情况,提升代码的健壮性和可维护性。通过实例代码,帮助开发者掌握异常处理技巧,确保程序稳定运行。
34 0
|
2月前
|
安全 Java 编译器
Java 泛型深入解析:类型安全与灵活性的平衡
Java 泛型通过参数化类型实现了代码重用和类型安全,提升了代码的可读性和灵活性。本文深入探讨了泛型的基本原理、常见用法及局限性,包括泛型类、方法和接口的使用,以及上界和下界通配符等高级特性。通过理解和运用这些技巧,开发者可以编写更健壮和通用的代码。
|
3月前
|
安全 Java API
java安全特性
java安全特性
30 8
|
3月前
|
安全 Java API
【性能与安全的双重飞跃】JDK 22外部函数与内存API:JNI的继任者,引领Java新潮流!
【9月更文挑战第7天】JDK 22外部函数与内存API的发布,标志着Java在性能与安全性方面实现了双重飞跃。作为JNI的继任者,这一新特性不仅简化了Java与本地代码的交互过程,还提升了程序的性能和安全性。我们有理由相信,在外部函数与内存API的引领下,Java将开启一个全新的编程时代,为开发者们带来更加高效、更加安全的编程体验。让我们共同期待Java在未来的辉煌成就!
72 11
|
3月前
|
安全 Java API
【本地与Java无缝对接】JDK 22外部函数和内存API:JNI终结者,性能与安全双提升!
【9月更文挑战第6天】JDK 22的外部函数和内存API无疑是Java编程语言发展史上的一个重要里程碑。它不仅解决了JNI的诸多局限和挑战,还为Java与本地代码的互操作提供了更加高效、安全和简洁的解决方案。随着FFM API的逐渐成熟和完善,我们有理由相信,Java将在更多领域展现出其强大的生命力和竞争力。让我们共同期待Java编程新纪元的到来!
116 11
|
4月前
|
安全 算法 Java
java系列之~~网络通信安全 非对称加密算法的介绍说明
这篇文章介绍了非对称加密算法,包括其定义、加密解密过程、数字签名功能,以及与对称加密算法的比较,并解释了非对称加密在网络安全中的应用,特别是在公钥基础设施和信任网络中的重要性。
|
4月前
|
Java
【Java集合类面试十二】、HashMap为什么线程不安全?
HashMap在并发环境下执行put操作可能导致循环链表的形成,进而引起死循环,因而它是线程不安全的。
|
4月前
|
安全 Java 测试技术
深入探讨Java安全编程的最佳实践,帮助开发者保障应用的安全性
在网络安全日益重要的今天,确保Java应用的安全性成为了开发者必须面对的课题。本文介绍Java安全编程的最佳实践,包括利用FindBugs等工具进行代码审查、严格验证用户输入以防攻击、运用输出编码避免XSS等漏洞、实施访问控制确保授权访问、采用加密技术保护敏感数据等。此外,还强调了使用最新Java版本、遵循最小权限原则及定期安全测试的重要性。通过这些实践,开发者能有效提升Java应用的安全防护水平。
55 2
|
4月前
|
安全 算法 Java
【Java集合类面试二】、 Java中的容器,线程安全和线程不安全的分别有哪些?
这篇文章讨论了Java集合类的线程安全性,列举了线程不安全的集合类(如HashSet、ArrayList、HashMap)和线程安全的集合类(如Vector、Hashtable),同时介绍了Java 5之后提供的java.util.concurrent包中的高效并发集合类,如ConcurrentHashMap和CopyOnWriteArrayList。
【Java集合类面试二】、 Java中的容器,线程安全和线程不安全的分别有哪些?