由HashMap哈希算法引出的求余%和与运算&转换问题

简介: 1、引出问题   在前面讲解 HashMap  的源码实现时,有如下几点:   ①、初始容量为 1>16   第三步:取模运算:(n-1) & hash 1 static final int hash(Object key) { 2 int h; 3 return (key == null) ? 0 : (h = key.hashCode()) ^ (h >>> 16); 4 } 5 6 tab[i = (n - 1) & hash];   ps:第 6 行代码是我自己加的。

1、引出问题

  在前面讲解 HashMap  的源码实现时,有如下几点:

  ①、初始容量为 1<<4,也就是24 = 16

  

  ②、负载因子是0.75,当存入HashMap的元素占比超过整个容量的75%时,进行扩容,而且在不超过int类型的范围时,进行2次幂的扩展(指长度扩为原来2倍)

  

  扩大一倍

  

  ③、新添加一个元素时,计算这个元素在HashMap中的位置,也就是本篇文章的主角 哈希运算。分为三步:

  第一步:取 hashCode 值: key.hashCode()

  第二步:高位参与运算:h>>>16

  第三步:取模运算:(n-1) & hash

1     static final int hash(Object key) {
2         int h;
3         return (key == null) ? 0 : (h = key.hashCode()) ^ (h >>> 16);
4     }
5 
6     tab[i = (n - 1) & hash];

  ps:第 6 行代码是我自己加的。

  我们知道一个好的 哈希算法能够使得元素分布的更加均匀,从而减少哈希冲突。HashMap 在这块的处理就很巧妙:

  首先第一步取得 hashCode,该方法是一个用native修饰的本地方法,返回的是一个 int 类型的值(根据内存地址换算出来的一个值),通常我们都会重写该方法。

  第二步将取得的哈希值无符号右移16位,高位补0。并与前面第一步获得的hash码进行按位异或^ 运算。这是为了当length比较小的时候,也能保证考虑到高低Bit位都参与到Hash的计算中,同时不会有太大的开销。

  

  本文的重点是第三步,将经过前面两步获取的 hash 值,与HashMap的集合长度减 1 进行按位与 & 运算:(n-1) & hash。但是其实很多哈希算法,为了使元素分布均匀,都是用的取模运算,用一个值去模上总长度,即 n%hash。我们知道在计算机中 & 的效率比 % 高很多,那么如何将 % 转换为 & 运算呢?在HashMap 中,是用的 (n - 1) & hash 进行运算的,那么这是为什么呢?

  这就是本篇博客我们将要明白的问题。

2、结论

  我们先给出结论:

  当 lenth = 2n 时,X % length = X & (length - 1)

  也就是说,长度为2的n次幂时,模运算 % 可以变换为按位与 & 运算。

  比如:9 % 4 = 1,9的二进制是 1001 ,4-1 = 3,3的二进制是 0011。 9 & 3 = 1001 & 0011 = 0001 = 1

  再比如:12 % 8 = 4,12的二进制是 1100,8-1 = 7,7的二进制是 0111。12 & 7 = 1100 & 0111 = 0100 = 4

  上面两个例子4和8都是2的n次幂,结论是成立的,那么当长度不为2的n次幂呢?

  比如:9 % 5 = 4,9的二进制是 1001,5-1 = 4,4的二进制是0100。9 & 4 = 1001 & 0100 = 0000 = 0。显然是不成立的。

  为什么是这样?下面我们来详细分析。

3、分析过程

  首先我们要知道如下规则:

  ①、"<<" 左移:右边空出的位上补0,左边的位将从字头挤掉,左移一位其值相当于乘2。

  ②、">>"右移:右边的位被挤掉,右移一位其值相当于除以2。对于左边移出的空位,如果是正数则空位补0,若为负数,可能补0或补1,这取决于所用的计算机系统。

  ③、">>>"无符号右移,右边的位被挤掉,对于左边移出的空位一概补上0。

  根据二进制数的特点,相信大家很好理解。

  对于给定一个任意的十进制数XnXn-1Xn-2....X1X0,我们将其用二进制的表示方法分解:

  XnXn-1Xn-2....X1X0   = Xn*2n+Xn-1*2n-1+......+X1*21+X0*20                       3-1公式

  这里的十进制数只有三位,同理当有N位时,后面2的幂次方依次从 0 开始递增到 N 。

  回到上面的结论: lenth = 2n 时,X % length = X & (length - 1)

  以及对于除法,被除数是满足分配率的(除数不满足):

  成立:(a+b)÷c=a÷c+b÷c                                                                          3-2公式

  不成立:a÷(b+c)≠a÷c+b÷c

  通过 3-1公式以及 3-2 公式,我们可以得出当任意一个十进制除以一个2k的数时,我们可以将这个十进制转换成3-1公式的表示形式:

  (XnXn-1Xn-2....X1X0)  / 2k   =  (Xn*2n+Xn-1*2n-1+......+X1*21+X0*20) / 2k = Xn*2n /  2k +Xn-1*2n-1 /  2k  +......+  X1*2/  2+ X0*20 /  2k

  如果我们想求上面公式的余数,相信大家一眼就能看出来:

  ①、当 0<= k <= n 时,余数为 Xk*2k+Xk-1*2k-1+......+X1*21+X0*20   ,也就是说 比 k 大的 n次幂,我们都舍掉了(大的都能整除 2k),比k小的我们都留下来了(小的不能整除2k)。那么留来下来即为余数。

  ②、当 k > n 时,余数即为整个十进制数。

  看到这里,我们离证明结论已经很近了。再回到上面说的二进制的移位操作,向右移 n 位,表示除以 2n 次方,由此我们得到一个很重要的结论:

  一个十进制数对一个2n 的数取余,我们可以将这个十进制转换为二进制数,将这个二进制数右移n位,移掉的这 n 位数即是余数。

  知道怎么算余数了,那么我们怎么去获取这移掉的 n 为数呢?

  我们再看20,21,22....2用二进制表示如下:

  0001,0010,0100,1000,10000......

  我们把上面的数字减一:

  0000,0001,0011,0111,01111......

  根据与运算符&的规律,当位上都是 1 时,结果才是 1,否则为 0。所以任意一个二进制数对 2k 取余时,我们可以将这个二进制数与(2k-1)进行按位与运算,保留的即使余数。

  这就完美的证明了前面给出的结论:

  当 lenth = 2n 时,X % length = X & (length - 1)

  注意,一定要是2n次方,才满足上面的公式,否则就是错误的。

4、总结

  通过上面的分析过程了,我们完美了证明了公式的正确性。在回到 HashMap 的实现过程,我们知道HashMap的初始容量为啥是 1<<4 了吧,而且每次扩容都是扩大一倍。因为必须要完美的满足 hash 算法。

 

作者: YSOcean
本文版权归作者所有,欢迎转载,但未经作者同意不能转载,否则保留追究法律责任的权利。
目录
相关文章
|
2月前
|
存储 算法 Java
解析HashSet的工作原理,揭示Set如何利用哈希算法和equals()方法确保元素唯一性,并通过示例代码展示了其“无重复”特性的具体应用
在Java中,Set接口以其独特的“无重复”特性脱颖而出。本文通过解析HashSet的工作原理,揭示Set如何利用哈希算法和equals()方法确保元素唯一性,并通过示例代码展示了其“无重复”特性的具体应用。
57 3
|
22天前
|
算法 安全
散列值使用相同的哈希算法
当使用相同的哈希算法对相同的数据进行散列时,所产生的散列值(也称为哈希值或摘要)总是相同的。这是因为哈希算法是一种确定性的函数,它对于给定的输入将始终产生相同的输出。 例如,如果你用SHA-256算法对字符串"hello world"进行哈希处理,无论何时何地,只要输入是完全一样的字符串,你都会得到相同的160位(40个十六进制字符)的SHA-256散列值。 但是,需要注意的是,即使是输入数据的微小变化也会导致产生的散列值完全不同。此外,不同的哈希算法(如MD5、SHA-1、SHA-256等)会对相同的数据产生不同的散列值。 哈希算法的一个关键特性是它们的“雪崩效应”,即输入中的一点小小
30 4
|
2月前
|
算法 索引
HashMap扩容时的rehash方法中(e.hash & oldCap) == 0算法推导
HashMap在扩容时,会创建一个新数组,并将旧数组中的数据迁移过去。通过(e.hash & oldCap)是否等于0,数据被巧妙地分为两类:一类保持原有索引位置,另一类索引位置增加旧数组长度。此过程确保了数据均匀分布,提高了查询效率。
48 2
|
2月前
|
存储 算法 C#
C#哈希查找算法
C#哈希查找算法
|
2月前
|
算法 安全 Go
Python与Go语言中的哈希算法实现及对比分析
Python与Go语言中的哈希算法实现及对比分析
50 0
|
2月前
|
存储 算法 C++
【算法】哈希映射(C/C++)
【算法】哈希映射(C/C++)
|
4月前
|
算法 安全 JavaScript
安全哈希算法:SHA算法
安全哈希算法:SHA算法
103 1
安全哈希算法:SHA算法
|
4月前
|
算法
聊聊一个面试中经常出现的算法题:组合运算及其实际应用例子
聊聊一个面试中经常出现的算法题:组合运算及其实际应用例子
|
4月前
|
JavaScript 算法 前端开发
国标哈希算法基础:SHA1、SHA256、SHA512、MD5 和 HMAC,Python和JS实现、加盐、算法魔改
国标哈希算法基础:SHA1、SHA256、SHA512、MD5 和 HMAC,Python和JS实现、加盐、算法魔改
653 1
|
5月前
|
缓存 负载均衡 算法
(四)网络编程之请求分发篇:负载均衡静态调度算法、平滑轮询加权、一致性哈希、最小活跃数算法实践!
先如今所有的技术栈中,只要一谈关于高可用、高并发处理相关的实现,必然会牵扯到集群这个话题,也就是部署多台服务器共同对外提供服务,从而做到提升系统吞吐量,优化系统的整体性能以及稳定性等目的。

热门文章

最新文章