Spark2.1集群安装(standalone模式)

本文涉及的产品
服务治理 MSE Sentinel/OpenSergo,Agent数量 不受限
云原生网关 MSE Higress,422元/月
注册配置 MSE Nacos/ZooKeeper,118元/月
简介: 机器部署   准备三台Linux服务器,安装好JDK1.7 下载Spark安装包   上传spark-2.1.0-bin-hadoop2.6.tgz安装包到Linux(intsmaze-131)上   解压安装包到指定位置tar -zxvf spark-2.

机器部署

  准备三台Linux服务器,安装好JDK1.7

下载Spark安装包

  上传spark-2.1.0-bin-hadoop2.6.tgz安装包到Linux(intsmaze-131)上

  解压安装包到指定位置tar -zxvf spark-2.1.0-bin-hadoop2.6.tgz -C /home/hadoop/app/spark2.0/

原文和作者一起讨论:http://www.cnblogs.com/intsmaze/p/6569036.html

微信:intsmaze

配置Spark

  进入到Spark安装目录

  cd /spark-2.1.0-bin-hadoop2.6/conf

  mv spark-env.sh.template spark-env.sh

  vi spark-env.sh

  在该配置文件中添加如下配置  

export JAVA_HOME=/home/hadoop/app/jdk1.7.0_65
export SPARK_MASTER_IP=intsmaze-131(指定standalone模式中主节点master是哪一台spark节点)
export SPARK_MASTER_PORT=7077 

  mv slaves.template slaves

  vi slaves

  在该文件中添加子节点所在的位置(Worker节点)

intsmaze-131
intsmaze-132
intsmaze-134

  将配置好的Spark拷贝到其他节点上(注意节点的路径必须和master一样,否则master启动集群回去从节点中对应目录中去启动work,不一致会报No such file or directory

scp -r spark-2.1.0-bin-hadoop2.6/ intsmaze-132:/home/hadoop/app/spark2.0/
scp -r spark-2.1.0-bin-hadoop2.6/ intsmaze-134:/home/hadoop/app/spark2.0/

  Spark集群配置完毕,目前是1个Master,3个Work,在intsmaze-131(master节点)上启动Spark集群

/home/hadoop/app/spark2.0/spark-2.1.0-bin-hadoop2.6/sbin/start-all.sh(spark集群不需要启动hadoop集群等,与hadoop集群无关。如果配置为spark on yarn上,那么必须启动spark和yarn集群而不需要启动hadoop)

  启动后执行jps命令,主节点上有Master进程和Work进程,其他子节点上有Work进程,登录Spark管理界面查看集群状态(主节点):http://intsmaze-131:8080/

执行第一个spark程序

/home/hadoop/app/spark2.0/spark-2.1.0-bin-hadoop2.6/bin/spark-submit \
 --class org.apache.spark.examples.SparkPi \
 --master spark://intsmaze-131:7077 \
 --executor-memory 1G \
 --total-executor-cores 2 /home/hadoop/app/spark2.0/spark-2.1.0-bin-hadoop2.6/examples/jars/spark-examples_2.11-2.1.0.jar \
 100

 该算法是利用蒙特·卡罗算法求PI。

启动Spark Shell

  spark-shell是Spark自带的交互式Shell程序,方便用户进行交互式编程,用户可以在该命令行下用scala编写spark程序。

 /home/hadoop/app/spark2.0/spark-2.1.0-bin-hadoop2.6/bin/spark-shell \
 --master spark://intsmaze-131:7077 \
--executor-memory 2g \
--total-executor-cores 2

参数说明:

--master spark://intsmaze-131:7077 指定Master的地址

--executor-memory 2g 指定每个worker可用内存为2G,现有集群该任务将无法启动,应该修改为512m。

--total-executor-cores 2 指定整个任务使用的cup核数为2个。

  注意:如果给该任务分配的资源无法达到指定的,将无法成功启动job。比如服务器节点可以内存为为1G,你设置每个worker2G,将会无法启动任务。askSchedulerImpl: Initial job has not accepted any resources; check your cluster UI to ensure that workers are registered and have sufficient resources

  如果启动spark shell时没有指定master地址,但是也可以正常启动spark shell和执行spark shell中的程序,其实是启动了spark的local模式,该模式仅在本机启动一个进程,没有与集群建立联系。Spark Shell中已经默认将SparkContext类初始化为对象sc。用户代码如果需要用到,则直接应用sc即可。

在spark shell中编写WordCount程序

1.首先启动hdfs

2.向hdfs上传一个文件到intsmaze-131:9000/words.txt

3.在spark shell中用scala语言编写spark程序

sc.textFile("hdfs://192.168.19.131:9000/words.txt").flatMap(_.split(" ")).map((_,1)).reduceByKey(_+_).saveAsTextFile("hdfs://192.168.19.131:9000/out")

4.使用hdfs命令查看结果

hdfs dfs -ls hdfs://intsmaze-131:9000/out/p*

说明:

sc是SparkContext对象,该对象时提交spark程序的入口
textFile(hdfs://intsmaze-131:9000/words.txt)是hdfs中读取数据
flatMap(_.split(" "))先map在压平
map((_,1))将单词和1构成元组
reduceByKey(_+_)按照key进行reduce,并将value累加
saveAsTextFile("hdfs://intsmaze-131:9000/out")将结果写入到hdfs中

配置Spark的高可用

  到此为止,Spark集群安装完毕,但是有一个很大的问题,那就是Master节点存在单点故障,要解决此问题,就要借助zookeeper,并且启动至少两个Master节点来实现高可靠,配置方式比较简单:

  Spark集群规划:intsmaze-131,intsmaze-132是Master;intsmaze-131,intsmaze-132,intsmaze-134是Worker

  安装配置zk集群,并启动zk集群

  停止spark所有服务,修改配置文件spark-env.sh,在该配置文件中删掉SPARK_MASTER_IP并添加如下配置

  export SPARK_DAEMON_JAVA_OPTS="-Dspark.deploy.recoveryMode=ZOOKEEPER -Dspark.deploy.zookeeper.url=zk1,zk2,zk3 -Dspark.deploy.zookeeper.dir=/spark"

  在node4上执行sbin/start-all.sh脚本,然后在node5上执行sbin/start-master.sh启动第二个Master

作者: intsmaze(刘洋)
老铁,你的--->推荐,--->关注,--->评论--->是我继续写作的动力。
微信公众号号:Apache技术研究院
由于博主能力有限,文中可能存在描述不正确,欢迎指正、补充!
本文版权归作者和博客园共有,欢迎转载,但未经作者同意必须保留此段声明,且在文章页面明显位置给出原文连接,否则保留追究法律责任的权利。
相关实践学习
基于MSE实现微服务的全链路灰度
通过本场景的实验操作,您将了解并实现在线业务的微服务全链路灰度能力。
相关文章
|
3月前
|
分布式计算 关系型数据库 MySQL
大数据-88 Spark 集群 案例学习 Spark Scala 案例 SuperWordCount 计算结果数据写入MySQL
大数据-88 Spark 集群 案例学习 Spark Scala 案例 SuperWordCount 计算结果数据写入MySQL
60 3
|
2月前
|
分布式计算 资源调度 Hadoop
Spark Standalone与YARN的区别?
本文详细解析了 Apache Spark 的两种常见部署模式:Standalone 和 YARN。Standalone 模式自带轻量级集群管理服务,适合小规模集群;YARN 模式与 Hadoop 生态系统集成,适合大规模生产环境。文章通过示例代码展示了如何在两种模式下运行 Spark 应用程序,并总结了两者的优缺点,帮助读者根据需求选择合适的部署模式。
95 3
|
3月前
|
存储 缓存 分布式计算
大数据-89 Spark 集群 RDD 编程-高阶 编写代码、RDD依赖关系、RDD持久化/缓存
大数据-89 Spark 集群 RDD 编程-高阶 编写代码、RDD依赖关系、RDD持久化/缓存
53 4
|
3月前
|
分布式计算 资源调度 Hadoop
Spark Standalone与YARN的区别?
【10月更文挑战第5天】随着大数据处理需求的增长,Apache Spark 成为了广泛采用的大数据处理框架。本文详细解析了 Spark Standalone 与 YARN 两种常见部署模式的区别,并通过示例代码展示了如何在不同模式下运行 Spark 应用程序。Standalone 模式自带轻量级集群管理,适合小规模集群或独立部署;YARN 则作为外部资源管理器,能够与 Hadoop 生态系统中的其他应用共享资源,更适合大规模生产环境。文章对比了两者的资源管理、部署灵活性、扩展性和集成能力,帮助读者根据需求选择合适的部署模式。
48 1
|
3月前
|
分布式计算 大数据 Spark
大数据-95 Spark 集群 SparkSQL Action与Transformation操作 详细解释与测试案例(二)
大数据-95 Spark 集群 SparkSQL Action与Transformation操作 详细解释与测试案例(二)
53 1
|
3月前
|
分布式计算 Java 大数据
大数据-92 Spark 集群 SparkRDD 原理 Standalone详解 ShuffleV1V2详解 RDD编程优化
大数据-92 Spark 集群 SparkRDD 原理 Standalone详解 ShuffleV1V2详解 RDD编程优化
50 0
大数据-92 Spark 集群 SparkRDD 原理 Standalone详解 ShuffleV1V2详解 RDD编程优化
|
3月前
|
SQL 分布式计算 大数据
大数据-100 Spark 集群 Spark Streaming DStream转换 黑名单过滤的三种实现方式(一)
大数据-100 Spark 集群 Spark Streaming DStream转换 黑名单过滤的三种实现方式(一)
44 0
|
3月前
|
SQL 分布式计算 大数据
大数据-100 Spark 集群 Spark Streaming DStream转换 黑名单过滤的三种实现方式(二)
大数据-100 Spark 集群 Spark Streaming DStream转换 黑名单过滤的三种实现方式(二)
38 0
|
3月前
|
消息中间件 分布式计算 Kafka
大数据-99 Spark 集群 Spark Streaming DStream 文件数据流、Socket、RDD队列流
大数据-99 Spark 集群 Spark Streaming DStream 文件数据流、Socket、RDD队列流
42 0
|
3月前
|
消息中间件 分布式计算 Kafka
大数据-98 Spark 集群 Spark Streaming 基础概述 架构概念 执行流程 优缺点
大数据-98 Spark 集群 Spark Streaming 基础概述 架构概念 执行流程 优缺点
55 0

相关实验场景

更多