【阿里算法专家】深度学习将业界技术迭代提升100倍,GraphDL 应用广阔

简介: IJCAI 2018 现场,阿里妈妈以 Ad Tech 为主题举办了 Workshop,阿里妈妈资深算法专家朱小强、高级算法专家林伟,分享了将深度学习引入工业级展示广告和搜索广告领域的创新与探索。

【新智元导读】IJCAI 2018 现场,阿里妈妈以 Ad Tech 为主题举办了 Workshop,阿里妈妈资深算法专家朱小强、高级算法专家林伟,分享了将深度学习引入工业级展示广告和搜索广告领域的创新与探索。

随着人工智能产学研的不断融合,企业与学术会议之间的合作也更加频繁和多样。此前,新智元曾经报道过,IJCAI国际广告算法大赛,中国团队包揽冠亚季军。这个竞赛实际上就是阿里集团与IJCAI的一个合作项目,阿里通过IJCAI的平台吸引更多人关注阿里,IJCAI则通过阿里的大赛吸引更多人关注和支持IJCAI。

IJCAI(International Joint Conference on Artificial Intelligence)被认为是人工智能领域最顶级的学术会议之一,涵盖机器学习、计算可持续性、图像识别、语音技术、视频技术等,对全球人工智能行业具有巨大影响力。

今年的合作竞赛由阿里妈妈承办。作为阿里巴巴旗下大数据营销平台,阿里妈妈身处于阿里巴巴庞大的交易场景之中,在人工智能领域也早有布局,构建了超大规模的学习模型,每天训练近100T的数据,有上千亿的样本。

IJCAI 2018 现场,阿里妈妈以 Ad Tech 为主题开展了workshop。阿里妈妈资深算法专家朱小强、高级算法专家林伟,以展示广告技术的两个最重要技术模块——Matching和Ranking为例,分享了他们在将深度学习引入工业级展示广告和搜索广告领域所做的创新与探索。

深度学习将业界技术迭代提升10~100倍

朱小强在演讲中表示,展示广告是互联网行业的主要营销模式之一。阿里巴巴有各种不同的展示广告形式,比如横幅、单品、信息流帖子等等。每天有数亿的用户访问阿里的系统,团队需要针对每位用户的个性化兴趣偏好,在几十毫秒内,从数千万广告集合中,寻找最优匹配结果进行展示。

超大规模的数据以及问题的高度非线性,对展示广告技术构成了巨大的挑战。过去两年里,阿里妈妈团队创造性地将深度学习引入到展示广告技术中,自主研发了一系列面向工业级尺度的端到端深度模型,推动了展示广告技术的全面革新,达到了世界领先的水平。

朱小强认为,深度学习给工业界掀起了一场生产力革命。在深度学习时代,模型的设计变成组件化,优化的方法变成标准化,而且设计和优化是解耦的。这些特点驱动了以深度学习为代表的AI技术迅速普及,而且将整个业界的技术迭代速度提升了1-2个数量级。

“过去两三年,深度学习在广告、搜索和推荐等核心工业界场景中野蛮生长,掀起了一股1.0的掘金浪潮;未来,我们判断深度学习将进一步完善为工业级基础设施,迈入2.0的工匠时代,技术的发展将由粗犷颠覆转变为精细化打磨。”

朱小强说:“10多年前,机器学习大规模地被引入到核心工业领域,由此开创了一个技术的黄金发展周期,我们预期深度学习技术会继续引领新的一轮技术增长。”

基于图的深度学习方法有广阔的应用空间

林伟在演讲中表示,搜索广告场景下,传统的观点一直认为匹配(Matching)的主要优化目标是寻找最相关的候选广告集。他们团队重新定义了这个目标,认为在电商场景下,Matching的主要优化目标是寻找相关性满足约束下,最符合业务目标(例如期望收益等)的候选广告集。基于对目标的重新认识,最近几年Matching算法的改进,大幅提升了直通车的营收。

林伟介绍,Matching主要问题可抽象为:1)对用户意图和候选广告之间是否可以建立链接的识别,以及2)对链接强度的预测。

图(Graph)是一种非常适合用来刻画这个问题的结构,基于图的深度学习方法在Matching上拥有广阔的应用空间。

目前,阿里妈妈已经构建了一套支持超大规模异构图表征学习的算法,并在Matching上成功落地。未来,他们将进一步深耕图深度学习(Graph-based Deep Learning)的方法及应用。

如今在淘宝场景中,图像因素越来越重要,用户的行为模式也越来越复杂。对于排序问题(Ranking),传统的一些模型在识别用户意图上存在诸多限制,需要更精巧和更强大的模型来更好地理解用户。阿里妈妈团队分别提出了很好的图像网络和记忆网络设计方法,增加Ranking模型识别用户意图的能力,经过实际测试都取得了不错的效果。

同时,此前在戛纳国际创意节首发的AI智能文案,在IJCAI也再度引发关注。这个产品基于深度神经网络的Sequence2Sequence模型,融合了注意力机制、位置编码、copy机制等,让机器模仿人写文案。

朱小强认为,“技术本身并不复杂和高深,但因为做到了从场景的实际需求出发,用技术和算法来驱动优化,也让技术和算法施展出最大的空间。”

本届 IJCAI 大会首席赞助官、悉尼科技大学杰出教授张成奇,阿里巴巴人工智能实验室研究员聂再清也到场做了分享。

原文发布时间为:2018-07-20
本文来自云栖社区合作伙伴新智元,了解相关信息可以关注“AI_era”。
原文链接:【阿里算法专家】深度学习将业界技术迭代提升100倍,GraphDL 应用广阔

相关文章
|
7月前
|
人工智能 运维 算法
基于 C# 深度优先搜索算法的局域网集中管理软件技术剖析
现代化办公环境中,局域网集中管理软件是保障企业网络高效运行、实现资源合理分配以及强化信息安全管控的核心工具。此类软件需应对复杂的网络拓扑结构、海量的设备信息及多样化的用户操作,而数据结构与算法正是支撑其强大功能的基石。本文将深入剖析深度优先搜索(Depth-First Search,DFS)算法,并结合 C# 语言特性,详细阐述其在局域网集中管理软件中的应用与实现。
157 3
|
3月前
|
运维 监控 算法
基于 Java 滑动窗口算法的局域网内部监控软件流量异常检测技术研究
本文探讨了滑动窗口算法在局域网流量监控中的应用,分析其在实时性、资源控制和多维分析等方面的优势,并提出优化策略,结合Java编程实现高效流量异常检测。
109 0
|
4月前
|
监控 算法 安全
基于 C# 基数树算法的网络屏幕监控敏感词检测技术研究
随着数字化办公和网络交互迅猛发展,网络屏幕监控成为信息安全的关键。基数树(Trie Tree)凭借高效的字符串处理能力,在敏感词检测中表现出色。结合C#语言,可构建高时效、高准确率的敏感词识别模块,提升网络安全防护能力。
107 2
|
6月前
|
监控 算法 JavaScript
基于 JavaScript 图算法的局域网网络访问控制模型构建及局域网禁止上网软件的技术实现路径研究
本文探讨局域网网络访问控制软件的技术框架,将其核心功能映射为图论模型,通过节点与边表示终端设备及访问关系。以JavaScript实现DFS算法,模拟访问权限判断,优化动态策略更新与多层级访问控制。结合流量监控数据,提升网络安全响应能力,为企业自主研发提供理论支持,推动智能化演进,助力数字化管理。
147 4
|
7月前
|
机器学习/深度学习 存储 算法
18个常用的强化学习算法整理:从基础方法到高级模型的理论技术与代码实现
本文系统讲解从基本强化学习方法到高级技术(如PPO、A3C、PlaNet等)的实现原理与编码过程,旨在通过理论结合代码的方式,构建对强化学习算法的全面理解。
1566 10
18个常用的强化学习算法整理:从基础方法到高级模型的理论技术与代码实现
|
6月前
|
存储 监控 算法
内网监控桌面与 PHP 哈希算法:从数据追踪到行为审计的技术解析
本文探讨了内网监控桌面系统的技术需求与数据结构选型,重点分析了哈希算法在企业内网安全管理中的应用。通过PHP语言实现的SHA-256算法,可有效支持软件准入控制、数据传输审计及操作日志存证等功能。文章还介绍了性能优化策略(如分块哈希计算和并行处理)与安全增强措施(如盐值强化和动态更新),并展望了哈希算法在图像处理、网络流量分析等领域的扩展应用。最终强调了构建完整内网安全闭环的重要性,为企业数字资产保护提供技术支撑。
155 2
|
7月前
|
存储 监控 算法
基于 Python 哈希表算法的局域网网络监控工具:实现高效数据管理的核心技术
在当下数字化办公的环境中,局域网网络监控工具已成为保障企业网络安全、确保其高效运行的核心手段。此类工具通过对网络数据的收集、分析与管理,赋予企业实时洞察网络活动的能力。而在其运行机制背后,数据结构与算法发挥着关键作用。本文聚焦于 PHP 语言中的哈希表算法,深入探究其在局域网网络监控工具中的应用方式及所具备的优势。
174 7
|
7月前
|
运维 监控 算法
基于 Python 迪杰斯特拉算法的局域网计算机监控技术探究
信息技术高速演进的当下,局域网计算机监控对于保障企业网络安全、优化资源配置以及提升整体运行效能具有关键意义。通过实时监测网络状态、追踪计算机活动,企业得以及时察觉潜在风险并采取相应举措。在这一复杂的监控体系背后,数据结构与算法发挥着不可或缺的作用。本文将聚焦于迪杰斯特拉(Dijkstra)算法,深入探究其在局域网计算机监控中的应用,并借助 Python 代码示例予以详细阐释。
163 6
|
7月前
|
存储 算法 物联网
解析局域网内控制电脑机制:基于 Go 语言链表算法的隐秘通信技术探究
数字化办公与物联网蓬勃发展的时代背景下,局域网内计算机控制已成为提升工作效率、达成设备协同管理的重要途径。无论是企业远程办公时的设备统一调度,还是智能家居系统中多设备间的联动控制,高效的数据传输与管理机制均构成实现局域网内计算机控制功能的核心要素。本文将深入探究 Go 语言中的链表数据结构,剖析其在局域网内计算机控制过程中,如何达成数据的有序存储与高效传输,并通过完整的 Go 语言代码示例展示其应用流程。
134 0

热门文章

最新文章