深入理解 Java 虚拟机【3】垃圾收集策略与算法

简介: 对于 Java 堆和方法区,我们只有在程序运行期间才能知道会创建哪些对象,这部分内存的分配和回收都是动态的,垃圾收集器所关注的正是这部分内存。

程序计数器、虚拟机栈、本地方法栈随线程而生,也随线程而灭;栈帧随着方法的开始而入栈,随着方法的结束而出栈。这几个区域的内存分配和回收都具有确定性,在这几个区域内不需要过多考虑回收的问题,因为方法结束或者线程结束时,内存自然就跟随着回收了。

而对于 Java 堆和方法区,我们只有在程序运行期间才能知道会创建哪些对象,这部分内存的分配和回收都是动态的,垃圾收集器所关注的正是这部分内存。

判定对象是否存活
若一个对象不被任何对象或变量引用,那么它就是无效对象,需要被回收。

引用计数法
在对象头维护着一个 counter 计数器,对象被引用一次则计数器 +1;若引用失效则计数器 -1。当计数器为 0 时,就认为该对象无效了。

引用计数算法的实现简单,判定效率也很高,在大部分情况下它都是一个不错的算法。但是主流的 Java 虚拟机里没有选用引用计数算法来管理内存,主要是因为它很难解决对象之间循环引用的问题。

举个栗子对象 objA 和 objB 都有字段 instance,令 objA.instance = objB 并且 objB.instance = objA,由于它们互相引用着对方,导致它们的引用计数都不为 0,于是引用计数算法无法通知 GC 收集器回收它们。

可达性分析法
所有和 GC Roots 直接或间接关联的对象都是有效对象,和 GC Roots 没有关联的对象就是无效对象。

GC Roots 是指:
Java 虚拟机栈(栈帧中的本地变量表)中引用的对象
本地方法栈中引用的对象
方法区中常量引用的对象
方法区中类静态属性引用的对象
GC Roots 并不包括堆中对象所引用的对象,这样就不会有循环引用的问题。

引用的种类
判定对象是否存活与“引用”有关。在 JDK 1.2 以前,Java 中的引用定义很传统,一个对象只有被引用或者没有被引用两种状态,我们希望能描述这一类对象:当内存空间还足够时,则保留在内存中;如果内存空间在进行垃圾手收集后还是非常紧张,则可以抛弃这些对象。很多系统的缓存功能都符合这样的应用场景。

在 JDK 1.2 之后,Java 对引用的概念进行了扩充,将引用分为了以下四种:

强引用(Strong Reference)
类似 "Object obj = new Object()" 这类的引用,就是强引用,只要强引用存在,垃圾收集器永远不会回收被引用的对象。

软引用(Soft Reference)
软引用是用来描述一些有用但并非必需的对象,j就是说,内存足够时留着它们,内存即将发生溢出时把这些对象列入回收范围进行回收。若回收过后还没有足够的内存,才抛出内存溢出异常。

弱引用(Weak Reference)
弱引用也是用来描述非必需对象的,但是它的强度比软引用更弱一些。当 JVM 进行垃圾回收时,无论内存是否充足,都会回收被软引用关联的对象。

虚引用(Phantom Reference)
虚引用也称幽灵引用或者幻影引用,它是最弱的一种引用关系。一个对象是否有虚引用的存在,完全不会对其生存时间构成影响。为一个对象设置虚引用关联的唯一目的就是能在这个对象被收集器回收时收到一个系统通知。

回收堆中无效对象
对于可达性分析中不可达的对象,也并不是没有存活的可能。

判定 finalize() 是否有必要执行
JVM 会判断此对象是否有必要执行 finalize() 方法,如果对象没有覆盖 finalize() 方法,或者 finalize() 方法已经被虚拟机调用过,那么视为“没有必要执行”。那么对象基本上就真的被回收了。

如果对象被判定为有必要执行 finalize() 方法,那么对象会被放入一个 F-Queue 队列中,虚拟机会以较低的优先级执行这些 finalize()方法,但不会确保所有的 finalize() 方法都会执行结束。如果 finalize() 方法出现耗时操作,虚拟机就直接停止指向该方法,将对象清除。

对象重生或死亡
如果在执行 finalize() 方法时,将 this 赋给了某一个引用,那么该对象就重生了。如果没有,那么就会被垃圾收集器清除。

任何一个对象的 finalize() 方法只会被系统自动调用一次,如果对象面临下一次回收,它的 finalize() 方法不会被再次执行,想继续在 finalize() 中自救就失效了。

回收方法区内存
方法区中存放生命周期较长的类信息、常量、静态变量,每次垃圾收集只有少量的垃圾被清除。方法区中主要清除两种垃圾:
废弃常量
无用的类

判定废弃常量
只要常量池中的常量不被任何变量或对象引用,那么这些常量就会被清除掉。比如,一个字符串 "bingo" 进入了常量池,但是当前系统没有任何一个 String 对象引用常量池中的 "bingo" 常量,也没有其它地方引用这个字面量,必要的话,"bingo"常量会被清理出常量池。

判定无用的类
判定一个类是否是“无用的类”,条件较为苛刻:
该类的所有对象都已经被清除
加载该类的 ClassLoader 已经被回收
该类的 java.lang.Class 对象没有在任何地方被引用,无法在任何地方通过反射访问该类的方法。

一个类被虚拟机加载进方法区,那么在堆中就会有一个代表该类的对象:java.lang.Class。这个对象在类被加载进方法区时创建,在方法区该类被删除时清除。

垃圾收集算法
学会了如何判定无效对象、无用类、废弃常量之后,剩余工作就是回收这些垃圾。常见的垃圾收集算法有以下几个:

标记-清除算法
判断哪些数据需要清除,并对它们进行标记,然后清除被标记的数据。

这种方法有两个不足:
效率问题:标记和清除两个过程的效率都不高。
空间问题:标记清除之后会产生大量不连续的内存碎片,碎片太多可能导致以后需要分配较大对象时,无法找到足够的连续内存而不得不提前触发另一次垃圾收集动作。

复制算法(新生代)
为了解决效率问题,“复制”收集算法出现了。它将可用内存按容量划分为大小相等的两块,每次只使用其中的一块。当这一块内存用完,需要进行垃圾收集时,就将存活者的对象复制到另一块上面,然后将第一块内存全部清除。这种算法有优有劣:
优点:不会有内存碎片的问题。
缺点:内存缩小为原来的一半,浪费空间。

为了解决空间利用率问题,可以将内存分为三块: Eden、From Survivor、To Survivor,比例是 8:1:1,每次使用 Eden 和其中一块 Survivor。回收时,将 Eden 和 Survivor 中还存活的对象一次性复制到另外一块 Survivor 空间上,最后清理掉 Eden 和刚才使用的 Survivor 空间。这样只有 10% 的内存被浪费。

但是我们无法保证每次回收都只有不多于 10% 的对象存活,当 Survivor 空间不够,需要依赖其他内存(指老年代)进行分配担保。

分配担保
为对象分配内存空间时,如果 Eden+Survivor 中空闲区域无法装下该对象,会触发 MinorGC 进行垃圾收集。但如果 Minor GC 过后依然有超过 10% 的对象存活,这样存活的对象直接通过分配担保机制进入老年代,然后再将新对象存入 Eden 区。

标记-整理算法(老年代)
在回收垃圾前,首先将废弃对象做上标记,然后将未标记的对象移到一边,最后清空另一边区域即可。

这是一种老年代的垃圾收集算法。老年代的对象一般寿命比较长,因此每次垃圾回收会有大量对象存活,如果采用复制算法,每次需要复制大量存活的对象,效率很低。

分代收集算法
根据对象存活周期的不同,将内存划分为几块。一般是把 Java 堆分为新生代和老年代,针对各个年代的特点采用最适当的收集算法。
新生代:复制算法
老年代:标记-清除算法、标记-整理算法

原文发布时间为:2018-07-19
本文作者:杨立滨
本文来自云栖社区合作伙伴“Java知音”,了解相关信息可以关注“Java知音

相关文章
|
4月前
|
设计模式 算法 搜索推荐
Java 设计模式之策略模式:灵活切换算法的艺术
策略模式通过封装不同算法并实现灵活切换,将算法与使用解耦。以支付为例,微信、支付宝等支付方式作为独立策略,购物车根据选择调用对应支付逻辑,提升代码可维护性与扩展性,避免冗长条件判断,符合开闭原则。
592 35
|
4月前
|
存储 人工智能 算法
从零掌握贪心算法Java版:LeetCode 10题实战解析(上)
在算法世界里,有一种思想如同生活中的"见好就收"——每次做出当前看来最优的选择,寄希望于通过局部最优达成全局最优。这种思想就是贪心算法,它以其简洁高效的特点,成为解决最优问题的利器。今天我们就来系统学习贪心算法的核心思想,并通过10道LeetCode经典题目实战演练,带你掌握这种"步步为营"的解题思维。
|
4月前
|
存储 算法 搜索推荐
《数据之美》:Java数据结构与算法精要
本系列深入探讨数据结构与算法的核心原理及Java实现,涵盖线性与非线性结构、常用算法分类、复杂度分析及集合框架应用,助你提升程序效率,掌握编程底层逻辑。
|
6月前
|
运维 监控 算法
基于 Java 滑动窗口算法的局域网内部监控软件流量异常检测技术研究
本文探讨了滑动窗口算法在局域网流量监控中的应用,分析其在实时性、资源控制和多维分析等方面的优势,并提出优化策略,结合Java编程实现高效流量异常检测。
264 0
|
7月前
|
机器学习/深度学习 算法 Java
Java实现林火蔓延路径算法
记录正在进行的森林防火项目中林火蔓延功能,本篇文章可以较好的实现森林防火蔓延,但还存在很多不足,如:很多参数只能使用默认值,所以蔓延范围仅供参考。(如果底层设备获取的数据充足,那当我没说)。注:因林火蔓延涉及因素太多,如静可燃物载量、矿质阻尼系数等存在估值,所以得出的结果仅供参考。
142 4
|
7月前
|
存储 监控 算法
企业上网监控场景下布隆过滤器的 Java 算法构建及其性能优化研究
布隆过滤器是一种高效的数据结构,广泛应用于企业上网监控系统中,用于快速判断员工访问的网址是否为违规站点。相比传统哈希表,它具有更低的内存占用和更快的查询速度,支持实时拦截、动态更新和资源压缩,有效提升系统性能并降低成本。
258 0
|
7月前
|
存储 负载均衡 算法
我们来说一说 Java 的一致性 Hash 算法
我是小假 期待与你的下一次相遇 ~
251 1
|
8月前
|
存储 算法 安全
Java中的对称加密算法的原理与实现
本文详细解析了Java中三种常用对称加密算法(AES、DES、3DES)的实现原理及应用。对称加密使用相同密钥进行加解密,适合数据安全传输与存储。AES作为现代标准,支持128/192/256位密钥,安全性高;DES采用56位密钥,现已不够安全;3DES通过三重加密增强安全性,但性能较低。文章提供了各算法的具体Java代码示例,便于快速上手实现加密解密操作,帮助用户根据需求选择合适的加密方案保护数据安全。
538 58
|
9月前
|
人工智能 算法 NoSQL
LRU算法的Java实现
LRU(Least Recently Used)算法用于淘汰最近最少使用的数据,常应用于内存管理策略中。在Redis中,通过`maxmemory-policy`配置实现不同淘汰策略,如`allkeys-lru`和`volatile-lru`等,采用采样方式近似LRU以优化性能。Java中可通过`LinkedHashMap`轻松实现LRUCache,利用其`accessOrder`特性和`removeEldestEntry`方法完成缓存淘汰逻辑,代码简洁高效。
366 0
|
9月前
|
存储 缓存 监控
上网行为监控系统剖析:基于 Java LinkedHashMap 算法的时间序列追踪机制探究
数字化办公蓬勃发展的背景下,上网行为监控系统已成为企业维护信息安全、提升工作效能的关键手段。该系统需实时记录并深入分析员工的网络访问行为,如何高效存储和管理这些处于动态变化中的数据,便成为亟待解决的核心问题。Java 语言中的LinkedHashMap数据结构,凭借其独有的有序性特征以及可灵活配置的淘汰策略,为上网行为监控系统提供了一种兼顾性能与功能需求的数据管理方案。本文将对LinkedHashMap在上网行为监控系统中的应用原理、实现路径及其应用价值展开深入探究。
214 3