EM 算法求解高斯混合模型python实现

简介: 注:本文是对《统计学习方法》EM算法的一个简单总结。1. 什么是EM算法?  引用书上的话:概率模型有时既含有观测变量,又含有隐变量或者潜在变量。如果概率模型的变量都是观测变量,可以直接使用极大似然估计法或者贝叶斯的方法进行估计模型参数,但是当模型含有隐藏变量时,就不能简单使用这些方法了。

注:本文是对《统计学习方法》EM算法的一个简单总结。

1. 什么是EM算法?

  引用书上的话:

概率模型有时既含有观测变量,又含有隐变量或者潜在变量。如果概率模型的变量都是观测变量,可以直接使用极大似然估计法或者贝叶斯的方法进行估计模型参数,但是当模型含有隐藏变量时,就不能简单使用这些方法了。EM算法就是含有隐变量的概率模型参数的极大似然估计法,或者极大似然后验概率估计法。

2. EM 算法的一个小例子:三硬币模型

  假设有3枚硬币,记作A,B,C。这些硬币的正面出现的概率分别为\(\pi\)\(p\)\(q\)。进行如下的试验:先掷硬币A,根据A的结果选择B和C,如果掷A得到正面,则选择B;如果掷A得到反面,则选择C。接着掷出选出的硬币。记录下这次掷硬币的结果,如果是正面,则记作1,反面则记作0。独立重复做了n次试验(这里取n=10),得到结果如下:1,1,0,1,0,0,1,0,1,1。假设只能观测到抛硬币的结果,不能观测到抛硬币的过程,那么我们该如何估计三硬币的参数\(\pi\)\(p\)\(q\)呢?(也就是估计三枚硬币正面向上的概率)
  EM算法分为E步和M步。EM 算法首先选取了参数的初始值,记作\(\theta^{(0)}\)=(\(\pi^{(0)}\),\(p^{(0)}\),\(q^{(0)}\))。然后通过下面的步骤迭代计算参数的估计值,直到收敛为止,第\(i\)次迭代的参数的估计值记作\(\theta^{(i)}\)=(\(\pi^{(i)}\),\(p^{(i)}\),\(q^{(i)}\)),则EM算法的第\(i+1\)次迭代为:
  E步:计算模型在参数\(\pi^{(i)}\)\(p^{(i)}\)\(q^{(i)}\)下观测数据\(y_j\)来自掷硬币B的概率为
\(\mu_j^{(i+1)}\) = \(\frac{\pi^{(i)}(p^{(i)})^{y_j}(1-p^{(i)})^{1-y_j}}{\pi^{(i)}(p^{(i)})^{y_j}(1-p^{(i)})^{1-y_j} + (1-\pi^{(i)})(q^{(i)})^{y_j}(1-q^{(i)})^{1-y_j}}\)
  M步:计算模型新的参数的估计值:
\(\pi^{(i+1)}=\frac{1}{n}\sum_{j=1}^{n}\mu_j^{(i+1)}\)
\(p^{(i+1)}=\frac{\sum_{j=1}^{n}\mu_j^{(i+1)}y_j}{\sum_{j=1}^{n}\mu_j^{(i+1)}}\)
\(q^{(i+1)}=\frac{\sum_{j=1}^{n}(1-\mu_j^{(i+1)})y_j}{\sum_{j=1}^{n}(1-\mu_j^{(i+1)})}\)

下面带入具体的数字计算一下。如果模型的初始参数取值为:\(\pi{(0)}=0.5,p^{(0)}=0.5,q^{(0)}=0.5\)
那么带入上面的三个公式就可以计算出:\(\pi{(1)}=0.5,p^{(1)}=0.6,q^{(1)}=0.6\),继续迭代可以得到 \(\pi{(2)}=0.5,p^{(2)}=0.6,q^{(2)}=0.6\)。于是我们可以得到原来参数\(\theta\)的极大似然估计为:\(\hat{\pi}=0.5,\hat{p}=0.6,\hat{q}=0.6\)
如果取初值改为 \(\pi{(0)}=0.4,p^{(0)}=0.6,q^{(0)}=0.7\),那么我们可以计算出:\(\mu_1^{(1)}=\frac{0.4\times0.6}{0.4\times0.6+0.6\times0.7}=0.364\)
:\(\mu_0^{(1)}=\frac{0.4\times0.4}{0.4\times0.4+0.6\times0.3}=0.47\)
那么由于观测值中1出现了6次,0出现了4次,于是我们容易计算出:
\(\pi^{(1)}=\frac{0.364\times6+0.47\times4}{10}=0.4064\)
\(p^{(1)}=\frac{0.364\times1\times6+0.47\times0\times4}{0.364\times6+0.47\times4}=0.537\)
\(q^{(1)}=\frac{(1-0.364)\times6}{(1-0.364)\times6+(1-0.47)\times4}=0.643\)
显然,我们由于初始值选择的不同,导致了模型参数最终估计的不同,这说明了EM算法对于参数的初始值是非常敏感的。

3 EM 算法的步骤

输入:观测变量数据\(Y\),隐变量数据\(Z\),联合分布\(P(Y,Z|\theta)\),条件分布\(P(Z|Y,\theta)\);
输出:模型参数\(\theta\)

(1) 选择模型参数的初值\(\theta^{(0)}\),开始迭代;
(2)\(E\)步:记\(\theta^{(i)}\)为第\(i\)次迭代参数\(\theta\)的估计值,在第\(i+1\)次迭代的E步,计算
\(Q(\theta,\theta^{(i)}=E_Z[logP(Y,Z|\theta)|Y,\theta^{(i)}]=\sum_{Z}logP(Y,Z|\theta)P(Z|Y,\theta^{(i)})\)
这里\(P(Z|Y,\theta^{(i)})\)是在给定观测数据Y和当前参数估计的\(\theta^{(i)}\)下隐变量数据\(Z\)的条件概率分布;
(3)\(M\)步:求使得\(Q(\theta,\theta^{(i)})\)极大化的\(\theta\),确定第\(i+1\)次迭代的参数的估计值\(\theta^{(i+1)}\)
\(\theta^{(i+1)}=arg max_{\theta}Q(\theta,\theta^{(i)})\)
(4)重复第(2)步和第(3)步,直到算法收敛。
上面定义的函数\(Q(\theta,\theta^{(i)})\)是EM算法的核心,称为Q函数(Q function)。下面给出Q函数的定义:
(Q函数) 完全数据的对数似然函数\(logP(Y,Z|\theta)\)关于给定观测数据\(Y\)和当前参数\(\theta^{(i)}\)下对未观测数据\(Z\)的条件概率分布\(P(Z|Y,\theta^{(i)})\)的期望称为\(Q\)函数,即:
\(Q(\theta,\theta^{(i)}=E_Z[logP(Y,Z|\theta)|Y,\theta^{(i)}]\)

4. EM算法的收敛性

1. 设\(P(Y|\theta)\)为观测数据的似然函数,\(\theta^{(i)}(i=1,2,...)\)为EM算法得到的参数估计序列,\(P(Y|\theta^{(i)}\)为对应的似然函数序列,则\(P(Y|\theta^{(i)}\)是单调递增的,即:

\(P(Y|\theta^{(i+1)} \ge P(Y|\theta^{(i)})\)

2. 设 \(L(\theta)=logP(Y|\theta)\)为观测数据的对数似然函数,\(\theta^{(i)}\)为EM算法得到的参数估计序列,\(L(\theta^{(i)})\)为对应的对数似然函数序列,则

(1) 如果\(P(Y|\theta)\)有上界,则\(L(\theta^{(i)})=logP(Y|\theta^{(i)})\)收敛到某一值\(L^{*}\);

(2) 在函数 \(Q(\theta,\theta^{'})\)\(L(\theta)\)满足一定的条件下,由EM算法得到的参数估计序列\(\theta^{(i)}\)的收敛值\(\theta^{*}\)\(L(\theta)\)的稳定点。

5. 高斯混合模型(GMM)

1. 高斯混合模型的定义:高斯混合模型是指具有如下形式的概率分布模型:

\(P(Y|\theta)=\sum_{k=1}^{K}\alpha_k\phi(y|\theta_k)\)
其中\(\alpha_k\)是系数,\(\alpha_k \ge 0\),\(\sum_{k=1}^{K}\alpha_k=1\);\(\phi(y|\theta_k)\)是高斯分布(正态分布)密度函数,\(\theta_k=(\mu_k,\sigma_k^{2})\),
\(\phi(y|\theta_k)=\frac{1}{\sqrt(2\pi)\sigma_k}exp(-\frac{(y-\mu_k)^2}{2\sigma_k^2})\) 称为第\(k\)个分模型。

2. 使用EM算法估计高斯混合模型

  具体推导过程从略,可以参见《统计学习方法》。这里直接给出结果:
高斯混合模型的EM估计算法
输入:观测数据\(y_1,y_2,...,y_N\),高斯混合模型;
输出:高斯混合模型的参数。
(1)取参数的初始值迭代
(2)E步,依据当前模型的参数,计算分模型k对观测数据\(y_j\)的响应度,
\(\hat\gamma_{jk}=\frac{\alpha_k\phi(y_j|\theta_k)}{\sum_{k=1}^{K}\alpha_k\phi(y_j|\theta_k)},j=1,2,...,N,k=1,2,...K\)
(3)计算新一轮迭代的模型参数
\(\hat\mu_k=\frac{\sum_{j=1}^{N}\hat\gamma_{jk}y_j}{\sum_{j=1}^{N}\hat\gamma_{jk}},k=1,2,...,K\)
\(\hat\sigma_k^2=\frac{\sum_{j=1}^{N}\hat\gamma_{jk}(y_j-\mu_k)^2}{\sum_{j=1}^{N}\hat\gamma_{jk}},k=1,2,...,K\)
\(\hat\alpha_k=\frac{\sum_{j=1}^{N}\hat\gamma_{jk}}{N},k=1,2,...,K\)
(4)重复(2)和(3)直到收敛。

6. python 实现 EM算法求解高斯混合模型

求解的步骤参考5,这里直接给出代码如下:

from __future__ import print_function
import numpy as np


def generateData(k,mu,sigma,dataNum):
    '''
    产生混合高斯模型的数据
    :param k: 比例系数
    :param mu: 均值
    :param sigma: 标准差
    :param dataNum:数据个数
    :return: 生成的数据
    '''
    # 初始化数据
    dataArray = np.zeros(dataNum,dtype=np.float32)
    # 逐个依据概率产生数据
    # 高斯分布个数
    n = len(k)
    for i in range(dataNum):
        # 产生[0,1]之间的随机数
        rand = np.random.random()
        Sum = 0
        index = 0
        while(index < n):
            Sum += k[index]
            if(rand < Sum):
                dataArray[i] = np.random.normal(mu[index],sigma[index])
                break
            else:
                index += 1
    return dataArray

def normPdf(x,mu,sigma):
    '''
    计算均值为mu,标准差为sigma的正态分布函数的密度函数值
    :param x: x值
    :param mu: 均值
    :param sigma: 标准差
    :return: x处的密度函数值
    '''
    return (1./np.sqrt(2*np.pi))*(np.exp(-(x-mu)**2/(2*sigma**2)))



def em(dataArray,k,mu,sigma,step = 10):
    '''
    em算法估计高斯混合模型
    :param dataNum: 已知数据个数
    :param k: 每个高斯分布的估计系数
    :param mu: 每个高斯分布的估计均值
    :param sigma: 每个高斯分布的估计标准差
    :param step:迭代次数
    :return: em 估计迭代结束估计的参数值[k,mu,sigma]
    '''
    # 高斯分布个数
    n = len(k)
    # 数据个数
    dataNum = dataArray.size
    # 初始化gama数组
    gamaArray = np.zeros((n,dataNum))
    for s in range(step):
        for i in range(n):
            for j in range(dataNum):
                Sum = sum([k[t]*normPdf(dataArray[j],mu[t],sigma[t]) for t in range(n)])
                gamaArray[i][j] = k[i]*normPdf(dataArray[j],mu[i],sigma[i])/float(Sum)
        # 更新 mu
        for i in range(n):
            mu[i] = np.sum(gamaArray[i]*dataArray)/np.sum(gamaArray[i])
        # 更新 sigma
        for i in range(n):
            sigma[i] = np.sqrt(np.sum(gamaArray[i]*(dataArray - mu[i])**2)/np.sum(gamaArray[i]))
        # 更新系数k
        for i in range(n):
            k[i] = np.sum(gamaArray[i])/dataNum

    return [k,mu,sigma]





if __name__ == '__main__':
    # 参数的准确值
    k = [0.3,0.4,0.3]
    mu = [2,4,3]
    sigma = [1,1,4]
    # 样本数
    dataNum = 5000
    # 产生数据
    dataArray = generateData(k,mu,sigma,dataNum)
    # 参数的初始值
    # 注意em算法对于参数的初始值是十分敏感的
    k0 = [0.3,0.3,0.4]
    mu0 = [1,2,2]
    sigma0 = [1,1,1]
    step = 6
    # 使用em算法估计参数
    k1,mu1,sigma1 = em(dataArray,k0,mu0,sigma0,step)
    # 输出参数的值
    print("参数实际值:")
    print("k:",k)
    print("mu:",mu)
    print("sigma:",sigma)
    print("参数估计值:")
    print("k1:",k1)
    print("mu1:",mu1)
    print("sigma1:",sigma1)

运行结果如下:
img_1d11d2d2d5f25496266f6da2f4e4e3c8.png
如果改变初始参数为:

k0=[0.1,0.4,0.5]
mu0=[3,3,2]
sigma0=[2,1,1.5]

那么得到的结果为:
img_7343a2c0c90c61b57a7bdccfa677b0f3.png
  对比可以发现,两次参数估计的结果相差还是很大的。这也说明了EM算法对初始参数的敏感性。在实际应用的过程中,我们可以通过多次试验验证来选择估计结果最好的那个作为初始参数。

热爱编程,热爱机器学习! github:http://www.github.com/Lyrichu github blog:http://Lyrichu.github.io 个人博客站点:http://www.movieb2b.com(不再维护)
目录
相关文章
|
1天前
|
数据采集 算法 数据可视化
python实现时序平滑算法SG滤波器
python实现时序平滑算法SG滤波器
|
6天前
|
机器学习/深度学习 自然语言处理 算法
Python遗传算法GA对长短期记忆LSTM深度学习模型超参数调优分析司机数据|附数据代码
Python遗传算法GA对长短期记忆LSTM深度学习模型超参数调优分析司机数据|附数据代码
|
6天前
|
算法 机器人 Python
Python实现教程:平面最短路径算法
Python实现教程:平面最短路径算法
13 1
|
12天前
|
机器学习/深度学习 运维 算法
【Python机器学习专栏】异常检测算法在Python中的实践
【4月更文挑战第30天】本文介绍了异常检测的重要性和在不同领域的应用,如欺诈检测和网络安全。文章概述了四种常见异常检测算法:基于统计、距离、密度和模型的方法。在Python实践中,使用scikit-learn库展示了如何实现这些算法,包括正态分布拟合、K-means聚类、局部异常因子(LOF)和孤立森林(Isolation Forest)。通过计算概率密度、距离、LOF值和数据点的平均路径长度来识别异常值。
|
12天前
|
机器学习/深度学习 数据可视化 算法
【Python机器学习专栏】t-SNE算法在数据可视化中的应用
【4月更文挑战第30天】t-SNE算法是用于高维数据可视化的非线性降维技术,通过最小化Kullback-Leibler散度在低维空间保持数据点间关系。其特点包括:高维到二维/三维映射、保留局部结构、无需预定义簇数量,但计算成本高。Python中可使用`scikit-learn`的`TSNE`类实现,结合`matplotlib`进行可视化。尽管计算昂贵,t-SNE在揭示复杂数据集结构上极具价值。
|
12天前
|
机器学习/深度学习 算法 数据挖掘
【Python机器学习专栏】关联规则学习:Apriori算法详解
【4月更文挑战第30天】Apriori算法是一种用于关联规则学习的经典算法,尤其适用于购物篮分析,以发现商品间的购买关联。该算法基于支持度和置信度指标,通过迭代生成频繁项集并提取满足阈值的规则。Python中可借助mlxtend库实现Apriori,例如处理购物篮数据,设置支持度和置信度阈值,找出相关规则。
|
12天前
|
机器学习/深度学习 算法 数据挖掘
【Python机器学习专栏】层次聚类算法的原理与应用
【4月更文挑战第30天】层次聚类是数据挖掘中的聚类技术,无需预设簇数量,能生成数据的层次结构。分为凝聚(自下而上)和分裂(自上而下)两类,常用凝聚层次聚类有最短/最长距离、群集平均和Ward方法。优点是自动确定簇数、提供层次结构,适合小到中型数据集;缺点是计算成本高、过程不可逆且对异常值敏感。在Python中可使用`scipy.cluster.hierarchy`进行实现。尽管有局限,层次聚类仍是各领域强大的分析工具。
|
12天前
|
机器学习/深度学习 算法 数据挖掘
【Python 机器学习专栏】K-means 聚类算法在 Python 中的实现
【4月更文挑战第30天】K-means 是一种常见的聚类算法,用于将数据集划分为 K 个簇。其基本流程包括初始化簇中心、分配数据点、更新簇中心并重复此过程直到收敛。在 Python 中实现 K-means 包括数据准备、定义距离函数、初始化、迭代和输出结果。虽然算法简单高效,但它需要预先设定 K 值,且对初始点选择敏感,可能陷入局部最优。广泛应用在市场分析、图像分割等场景。理解原理与实现对应用聚类分析至关重要。
|
12天前
|
机器学习/深度学习 算法 前端开发
【Python机器学习专栏】集成学习算法的原理与应用
【4月更文挑战第30天】集成学习通过组合多个基学习器提升预测准确性,广泛应用于分类、回归等问题。主要步骤包括生成基学习器、训练和结合预测结果。算法类型有Bagging(如随机森林)、Boosting(如AdaBoost)和Stacking。Python中可使用scikit-learn实现,如示例代码展示的随机森林分类。集成学习能降低模型方差,缓解过拟合,提高预测性能。
|
12天前
|
机器学习/深度学习 算法 Python
【Python 机器学习专栏】随机森林算法的性能与调优
【4月更文挑战第30天】随机森林是一种集成学习方法,通过构建多棵决策树并投票或平均预测结果,具有高准确性、抗过拟合、处理高维数据的能力。关键性能因素包括树的数量、深度、特征选择和样本大小。调优方法包括调整树的数量、深度,选择关键特征和参数优化。Python 示例展示了使用 GridSearchCV 进行调优。随机森林广泛应用于分类、回归和特征选择问题,是机器学习中的重要工具。