MaxCompute 中的Code Generation技术简介

本文涉及的产品
云原生大数据计算服务MaxCompute,500CU*H 100GB 3个月
云原生大数据计算服务 MaxCompute,5000CU*H 100GB 3个月
简介: 前言       在《数据库系统中的Code Generation技术介绍》中,我们简单介绍了一下Code Generation技术及其在大规模OLAP系统,特别是大规模分布式OLAP系统中的重要性。MaxCompute采用了Code Generation技术来提高计算效率。在MaxCompute

前言   

   在《数据库系统中的Code Generation技术介绍》中,我们简单介绍了一下Code Generation技术及其在大规模OLAP系统,特别是大规模分布式OLAP系统中的重要性。MaxCompute采用了Code Generation技术来提高计算效率。在MaxCompute2.0中,我们又引入了基于LLVM的JIT(Just In Time) Code Generation技术。结合向量化的执行引擎,基于SIMD技术的执行效率优化等方式,较之MaxCompute 1.0,MaxCompute 2.0在性能方便有了较大的提升,具体可以参照《MaxCompute2.0性能评测:更强大、更高效之上的更快速》。

MaxCompute 1.0中的Code Generation

   如上图,MaxCompute 1.0采用了静态的Code Generation技术,工作主要在MaxCompute控制集群中名为“Executor”的角色上完成。其流程如下:
  1. 用户的SQL语句在Executor上经过Parsing和Optimization之后,生成对应的查询计划。
  2. Executor上的Code Generation模块将查询计划翻译成一个名为“mapred.cpp”的C++源文件。如上图所示,查询计划中的每一个Task(就是MaxCompute作业中的一个Stage)会被翻译成C++中的一个Class, 而所有的处理逻辑被生成到该Class的Process()方法当中。
  3. Executor调用g++将“mapred.cpp”编译成一个动态库,并将其下发到计算集群中的每一个Worker上。
  4. 被调度起来的Worker会Load该动态库,调用相应的Process()方法以完成计算逻辑。
   可以看到,利用Code Generation技术,对于每一个SQL来说执行时代码都是经过定制的,因此执行效率较传统的Volcano Model更好。但是,其中也有一些问题。
  1. g++ 编译还是比较消耗CPU/内存的,特别是当优化选项开到O2以上的时候。特别是用户SQL比较复杂的情况下(有些SQL在SELECT语句中有多达上千个表达式,或者表达式的嵌套计算特别深入),生成的C++源文件也比较大,编译更加耗时。在实际生产中,我们见过编译耗时数十秒,消耗上G内存的情况。
  2. 生成的动态库在控制集群和计算集群之间传输也会有带来一定的网络开销。因为这个动态库的与SQL逻辑紧密相关的,因此无法复用,因此每个SQL都会经历编译,下发的过程,在任务提交比较频繁的情况下,控制集群的稳定性会收到一定挑战。
  3. 因为较高的编译时开销,这种Code Generation的方式在处理复杂的语句加中小数据规模查询的场景,比如service mode下,overhead太大。

MaxCompute 2.0中的Code Generation


 MaxCompute 2.0采用了基于LLVM的JIT Code Generation技术。所谓JIT,就是程序在运行期间根据需要动态生成相应的机器指令。这样,整个Code Generation的工作由控制集群移交到了真正执行计算逻辑的计算集群各个Worker上。其流程如下:
  1. 和MaxCompute 1.0中一样,用户的SQL语句在Executor上经过Parsing和Optimization之后,生成对应的查询计划。
  2. 查询计划直接被发送到计算集群各个Worker上。
  3. MaxCompute 2.0执行引擎的Code Generation模块Load查询计划,并利用LLVM C++ API生成相应的机器码。Code Generation模块返回一个函数指针作为调用的入口。
  4. Worker通过调用Code Generation模块返回的函数指针以完成计算逻辑。
   与MaxCompute 1.0相比,MaxCompute 2.0中Code Generation速度有明显提升。在1.0中,一个SQL的平均Code Generation耗时大概在2-3s左右,这个时间在2.0中被缩短到100 - 200ms。因为在2.0中Code Generation都在计算集群的Worker上完成,因此相对来说减轻了控制集群的压力,有助于MaxCompute控制集群的稳定性。此外,因为MaxCompute 2.0的执行引擎是复用的(不因为SQL不同而不一样),因此无需像1.0中一样,在控制集群与计算集群之间传输动态库,降低了控制集群与计算机群之间的网络负载。

后续工作

   目前,MaxCompute 2.0 的执行引擎还是以Volcano Model为基础。只是在Volcano Model中各个算子之间以Batch模式传递数据,并且以列式执行的方式提高执行速度。基于LLVM的JIT Code Generation现在主要用在表达式计算,Streamline等热点部分。之后,我们准备尝试Full Stage的Code Generation, 类似http://www.hyper-db.com/。 有兴趣的同学可以看看这个:http://www.vldb.org/pvldb/vol4/p539-neumann.pdf。 附件中的PDF结合了《数据库系统中的Code Generation技术介绍》和本文的部分内容,有兴趣的同学可以作为参考。


欢迎加入“数加·MaxCompute购买咨询”钉钉群(群号: 11782920)进行咨询,群二维码如下:

96e17df884ab556dc002c912fa736ef6558cbb51 
相关实践学习
基于MaxCompute的热门话题分析
本实验围绕社交用户发布的文章做了详尽的分析,通过分析能得到用户群体年龄分布,性别分布,地理位置分布,以及热门话题的热度。
SaaS 模式云数据仓库必修课
本课程由阿里云开发者社区和阿里云大数据团队共同出品,是SaaS模式云原生数据仓库领导者MaxCompute核心课程。本课程由阿里云资深产品和技术专家们从概念到方法,从场景到实践,体系化的将阿里巴巴飞天大数据平台10多年的经过验证的方法与实践深入浅出的讲给开发者们。帮助大数据开发者快速了解并掌握SaaS模式的云原生的数据仓库,助力开发者学习了解先进的技术栈,并能在实际业务中敏捷的进行大数据分析,赋能企业业务。 通过本课程可以了解SaaS模式云原生数据仓库领导者MaxCompute核心功能及典型适用场景,可应用MaxCompute实现数仓搭建,快速进行大数据分析。适合大数据工程师、大数据分析师 大量数据需要处理、存储和管理,需要搭建数据仓库?学它! 没有足够人员和经验来运维大数据平台,不想自建IDC买机器,需要免运维的大数据平台?会SQL就等于会大数据?学它! 想知道大数据用得对不对,想用更少的钱得到持续演进的数仓能力?获得极致弹性的计算资源和更好的性能,以及持续保护数据安全的生产环境?学它! 想要获得灵活的分析能力,快速洞察数据规律特征?想要兼得数据湖的灵活性与数据仓库的成长性?学它! 出品人:阿里云大数据产品及研发团队专家 产品 MaxCompute 官网 https://www.aliyun.com/product/odps 
目录
相关文章
|
3月前
|
存储 机器学习/深度学习 分布式计算
大数据技术——解锁数据的力量,引领未来趋势
【10月更文挑战第5天】大数据技术——解锁数据的力量,引领未来趋势
|
2月前
|
存储 机器学习/深度学习 SQL
大数据处理与分析技术
大数据处理与分析技术
144 2
|
3月前
|
存储 分布式计算 数据可视化
大数据常用技术与工具
【10月更文挑战第16天】
201 4
|
2月前
|
存储 分布式计算 NoSQL
【赵渝强老师】大数据技术的理论基础
本文介绍了大数据平台的核心思想,包括Google的三篇重要论文:Google文件系统(GFS)、MapReduce分布式计算模型和BigTable大表。这些论文奠定了大数据生态圈的技术基础,进而发展出了Hadoop、Spark和Flink等生态系统。文章详细解释了GFS的架构、MapReduce的计算过程以及BigTable的思想和HBase的实现。
110 0
|
3月前
|
存储 缓存 分布式计算
大数据-83 Spark 集群 RDD编程简介 RDD特点 Spark编程模型介绍
大数据-83 Spark 集群 RDD编程简介 RDD特点 Spark编程模型介绍
50 4
|
3月前
|
存储 数据采集 监控
大数据技术:开启智能决策与创新服务的新纪元
【10月更文挑战第5天】大数据技术:开启智能决策与创新服务的新纪元
|
17天前
|
分布式计算 大数据 数据处理
技术评测:MaxCompute MaxFrame——阿里云自研分布式计算框架的Python编程接口
随着大数据和人工智能技术的发展,数据处理的需求日益增长。阿里云推出的MaxCompute MaxFrame(简称“MaxFrame”)是一个专为Python开发者设计的分布式计算框架,它不仅支持Python编程接口,还能直接利用MaxCompute的云原生大数据计算资源和服务。本文将通过一系列最佳实践测评,探讨MaxFrame在分布式Pandas处理以及大语言模型数据处理场景中的表现,并分析其在实际工作中的应用潜力。
53 2
|
1月前
|
SQL 运维 大数据
轻量级的大数据处理技术
现代大数据应用架构中,数据中心作为核心,连接数据源与应用,承担着数据处理与服务的重要角色。然而,随着数据量的激增,数据中心面临运维复杂、体系封闭及应用间耦合性高等挑战。为缓解这些问题,一种轻量级的解决方案——esProc SPL应运而生。esProc SPL通过集成性、开放性、高性能、数据路由和敏捷性等特性,有效解决了现有架构的不足,实现了灵活高效的数据处理,特别适用于应用端的前置计算,降低了整体成本和复杂度。
|
2月前
|
机器学习/深度学习 存储 大数据
在大数据时代,高维数据处理成为难题,主成分分析(PCA)作为一种有效的数据降维技术,通过线性变换将数据投影到新的坐标系
在大数据时代,高维数据处理成为难题,主成分分析(PCA)作为一种有效的数据降维技术,通过线性变换将数据投影到新的坐标系,保留最大方差信息,实现数据压缩、去噪及可视化。本文详解PCA原理、步骤及其Python实现,探讨其在图像压缩、特征提取等领域的应用,并指出使用时的注意事项,旨在帮助读者掌握这一强大工具。
95 4
|
2月前
|
机器学习/深度学习 存储 大数据
云计算与大数据技术的融合应用
云计算与大数据技术的融合应用

相关产品

  • 云原生大数据计算服务 MaxCompute