【云栖大会】阿里云研究中心发布最新报告:人工智能未来制胜之道(附下载)

简介: 阿里云研究中心、Alibaba Innovation Ventures和BCG最新合作报告揭示:未来3-5年内人工智能处于服务智能阶段,将爆发海量应用,人工智能行业将由五大定位模式主导
杭州,2016年10月13日——在数据、算法、计算、场景驱动新一轮人工智能飞速发展,未来3-5年内人工智能将处于服务智能阶段,即技术边际突破但应用海量拓展。人工智能未来竞争格局将由生态构建者、技术算法驱动者、应用聚焦者、垂直行业先行者、基础设施提供者五类竞争定位模式主导,其中生态构建者是关键的一环。以上发现来自阿里云研究中心、Alibaba Innovation Ventures及波士顿咨询公司(BCG)合作发布的最新研究报告《人工智能:未来制胜之道》。该报告于2016杭州・云栖大会10月13日会上发布。
cf9b8ed1d16afa252554e35ae55f65c7a48c9db1
 

自20世纪50年代以来,三次技术革新浪潮中,人工智能诞生并发展。现阶段,人工智能正在从专有人工智能向通用人工智能发展过渡,由数据、算法、计算等互联网技术群和应用场景互为推动,协同发展,自我演进。人工智能已不再局限于模拟人的行为结果,而拓展到“泛智能”应用,即更好地解决问题、有创意地解决问题和解决更复杂的问题。这些问题既包含人在信息爆炸时代面临的信息接受和处理困难,也包含企业面临的运营成本逐步增加、消费者诉求和行为模式转变、商业模式被颠覆等问题,同时还包含社会亟需解决的对自然/环境的治理、对社会资源优化和维护社会稳定等挑战。

三类关键商业流程特性预测人工智能应用
人工智能具备“快速处理”和“自主学习”两种能力,并已在图像识别、语言识别、自然语言处理等多个方面成功应用。本报告通过分析典型的商业流程,从三类关键商业流程特性预测了人工智能的应用空间。研究发现,人工智能最适于解决符合以下特点的商业问题:其一,行业存在持续痛点;其二,商业流程本身具备数字化的信息输入,问题可以细分并清晰地界定,商业流程存在重复,且获得的结果的沟通以书面沟通或单项沟通为主;其三,商业流程较少受整体商业环境的复杂影响。

大数据是战略性竞争优势
数据是人工智能的基础,对企业而言,拥有针对特定领域的庞大数据集,能够成为竞争优势的重要来源。现阶段,制约人工智能领域很多重大突破的关键,并非是算法不够先进,而是缺乏高质量的数据集。现阶段,特别是对创业公司而言,数据的来源主要有三种。方式一,自筹数据,即从零开始,投入大量人力采集数据,或向消费者提供照片处理等免费应用,以此来快速积累数据。方式二,公共数据。我国香港、上海、北京、武汉、无锡、佛山南海等城市都已开通公共数据开放平台。方式三,产业数据协同,即创业公司或行业公司和产业链上游的数据或平台型公司建立合作,连接对双方均有利的产品或数据,如阿里云数加平台已和益海鑫星、有理数科技合作打造海洋数据服务平台。

人工智能未来将按三阶段场景发展,短期处于服务智能
从人工智能的技术突破和应用价值两维度分析,未来人工智能将按服务智能、科技突破、超级智能三个场景发展。未来3-5年仍处于服务智能阶段,即技术边际进步,应用海量扩展;中长期人工智能将取得显著技术突破,应用向技术创新领域的纵深拓展;长期人工智能将逐渐发展到超级智能阶段,技术和应用都极度拓展,人工智能将颠覆各个行业和领域。
未来3-5年,在服务智能阶段,数据可得性高的行业,人工智能将率先用于解决行业痛点,爆发大量场景应用。医疗、金融、交通、教育、公共安全、零售、商业服务等行业数据电子化程度较高、数据较集中且数据质量较高,因此在这些行业将会率先涌现大量的人工智能场景应用,用以解决行业痛点。

人工智能五大竞争定位模式,生态构建者是关键一环
在人工智能平台化的趋势下,未来人工智能将呈现若干主导平台加广泛场景应用的竞争格局,生态构建者将成为其中最重要的一类模式。按产业链展开分析,人工智能将呈现生态构建者、技术算法驱动者、应用聚焦者、垂直行业先行者、基础设施提供者五类竞争定位模式。
生态构建者以互联网公司为主,布局基础计算能力、数据,通用算法、框架和技术,以及应用平台和具体解决方案的全产业链,聚集大量开发者和用户,将成为其中重要的一类模式。算法驱动者以软件公司为主,深耕算法和通用技术,同时以场景应用作为流量入口。应用聚焦者以创业公司和传统行业公司为主,基于场景或行业数据,开发大量细分场景应用。垂直领域先行者坐拥杀手级应用(如出行场景应用、面部识别应用等),积累大量用户和数据,并向产业链上游的技术和算法拓展,成为垂直领域的颠覆者。基础设施提供者,以芯片或硬件等基础设施公司为主,从基础设施切入,提高技术能力,向数据、算法等产业链上游拓展。
目前,科技巨头都已在产业链的基础技术层和应用层着手布局。在产业链的基础层,科技巨头通过推出算法平台吸引开发者,希望实现快速的产品迭代、活跃的社区、众多的开发者,从而打造开发者生态,成为行业标准,实现持续获利。在产业链的应用层,科技巨头都借助积累的个人用户数据,开发针对个人用户和企业用户的解决方案。针对企业用户的应用/解决方案未来的变现模式除直接出售解决方案外,还可以从流量和广告中转化价值。

抓住战略机遇,构建竞争优势
传统企业的竞争优势主要来自于两个方面,其一,在企业布局上,企业有专有的固定资产、品牌、知识产权等资源,在所在领域取得规模经济和范围经济,并通过门店和经销商网络建立了稳定的客户关系;其二,在企业自身的能力上,企业积累独特的人力资源和技能,并在流程上尽可能精简。

大数据和人工智能将企业竞争带入新的纪元,互联网不仅连接虚拟空间,还连接人和资产所在的现实空间。人工智能时代,企业竞争优势转变为算法和数据资产,建立学习网络和数据生态,360度洞察消费者,通过人工智能不断地学习产生新的知识,同时再数据驱动下,进行即时自动决策。 为实现快速转型,在人工智能阶段构建新的竞争优势,传统企业需要携手互联网企业,探索新的商业模式。

相关文章
|
17天前
|
人工智能 JSON API
阿里云文档智能 & RAG解决方案:提升AI大模型业务理解与应用
阿里云推出的文档智能 & RAG解决方案,旨在通过先进的文档解析技术和检索增强生成(RAG)方法,显著提升人工智能大模型在业务场景中的应用效果。该方案通过文档智能(Document Mind)技术将非结构化文档内容转换为结构化数据,提取文档的层级树、样式和版面信息,并输出为Markdown和Json格式,为RAG提供语义分块策略。这一过程不仅解决了文档内容解析错误和切块丢失语义信息的问题,还优化了输出LLM友好的Markdown信息。方案的优势在于其多格式支持能力,能够处理包括Office文档、PDF、Html、图片在内的主流文件类型,返回文档的样式、版面信息和层级树结构。
75 2
|
11天前
|
机器学习/深度学习 人工智能 人机交互
图形学领域的研究热点会给人工智能带来哪些挑战和机遇?
图形学中的一些研究热点,如 3D 模型生成与重建,需要大量的 3D 数据来训练模型,但 3D 数据的获取往往比 2D 图像数据更困难、成本更高。而且,3D 数据的多样性和复杂性也使得数据的标注和预处理工作更加繁琐,这对人工智能的数据处理能力提出了更高要求。例如,在训练一个能够生成高精度 3D 人体模型的人工智能模型时,需要大量不同姿态、不同体型的 3D 人体扫描数据,而这些数据的采集和整理是一项艰巨的任务.
|
24天前
|
存储 人工智能 自然语言处理
Elasticsearch Inference API增加对阿里云AI的支持
本文将介绍如何在 Elasticsearch 中设置和使用阿里云的文本生成、重排序、稀疏向量和稠密向量服务,提升搜索相关性。
65 14
Elasticsearch Inference API增加对阿里云AI的支持
|
21天前
|
存储 人工智能 数据可视化
高效率,低成本!且看阿里云AI大模型如何帮助企业提升客服质量和销售转化率
在数字化时代,企业面临海量客户对话数据处理的挑战。阿里云推出的“AI大模型助力客户对话分析”解决方案,通过先进的AI技术和智能化分析,帮助企业精准识别客户意图、发现服务质量问题,并生成详尽的分析报告和可视化数据。该方案采用按需付费模式,有效降低企业运营成本,提升客服质量和销售转化率。
高效率,低成本!且看阿里云AI大模型如何帮助企业提升客服质量和销售转化率
|
16天前
|
人工智能 Cloud Native 数据管理
媒体声音|重磅升级,阿里云发布首个“Data+AI”驱动的一站式多模数据平台
在2024云栖大会上,阿里云瑶池数据库发布了首个一站式多模数据管理平台DMS:OneMeta+OneOps。该平台由Data+AI驱动,兼容40余种数据源,实现跨云数据库、数据仓库、数据湖的统一数据治理,帮助用户高效提取和分析元数据,提升业务决策效率10倍。DMS已服务超10万企业客户,降低数据管理成本高达90%。
|
13天前
|
存储 人工智能 弹性计算
阿里云弹性计算_加速计算专场精华概览 | 2024云栖大会回顾
2024年9月19-21日,2024云栖大会在杭州云栖小镇举行,阿里云智能集团资深技术专家、异构计算产品技术负责人王超等多位产品、技术专家,共同带来了题为《AI Infra的前沿技术与应用实践》的专场session。本次专场重点介绍了阿里云AI Infra 产品架构与技术能力,及用户如何使用阿里云灵骏产品进行AI大模型开发、训练和应用。围绕当下大模型训练和推理的技术难点,专家们分享了如何在阿里云上实现稳定、高效、经济的大模型训练,并通过多个客户案例展示了云上大模型训练的显著优势。
|
10天前
|
机器学习/深度学习 人工智能 机器人
推荐一些关于将图形学先验知识融入人工智能模型的研究论文
推荐一些关于将图形学先验知识融入人工智能模型的研究论文
|
16天前
|
存储 人工智能 调度
阿里云吴结生:高性能计算持续创新,响应数据+AI时代的多元化负载需求
在数字化转型的大潮中,每家公司都在积极探索如何利用数据驱动业务增长,而AI技术的快速发展更是加速了这一进程。
|
11天前
|
机器学习/深度学习 人工智能 数据可视化
人工智能在图形学领域的研究热点有哪些?
AIGC:通过生成对抗网络(GAN)、变分自编码器(VAE)及其变体等技术,能够根据用户输入的文字描述、草图等生成高质量、高分辨率的图像,在艺术创作、游戏开发、广告设计等领域应用广泛。如OpenAI的DALL-E、Stable Diffusion等模型,可生成风格各异、内容丰富的图像,为创作者提供灵感和素材.
|
11天前
|
人工智能 架构师
活动火热报名中|阿里云&Elastic:AI Search Tech Day
2024年11月22日,阿里云与Elastic联合举办“AI Search Tech Day”技术思享会活动。
155 2