【译】10个机器学习的JavaScript示例

本文涉及的产品
模型在线服务 PAI-EAS,A10/V100等 500元 1个月
交互式建模 PAI-DSW,5000CU*H 3个月
模型训练 PAI-DLC,5000CU*H 3个月
简介: 原文地址:10 Machine Learning Examples in JavaScript 在过去的每一年,用于机器学习(Machine Learning)的库在变得越来越快和易用。一直以来Python都是机器学习的首选语言,但现在几乎可将所有语言用于神经网络(neural networks),这里当然也包括JavaScript! 近几年,Web生态系统取得了很大进步,虽然JavaScript和Node.js的性能比Python和Java略差,但它们已足够处理许多机器学习问题。

原文地址:10 Machine Learning Examples in JavaScript

在过去的每一年,用于机器学习(Machine Learning)的库在变得越来越快和易用。一直以来Python都是机器学习的首选语言,但现在几乎可将所有语言用于神经网络(neural networks),这里当然也包括JavaScript!

近几年,Web生态系统取得了很大进步,虽然JavaScript和Node.js的性能比Python和Java略差,但它们已足够处理许多机器学习问题。Web语言具有被广泛且易于使用的优势——你只需一个Web浏览器就可以运行一个JavaScript语言编写的机器学习项目。

虽然许多JavaScript语言编写的机器学习库是刚刚诞生并且还在持续开发中,但还是值得去尝试使用它们。这篇文章会介绍几个JavaScript语言编写的机器学习库以及一些很酷的AI Web应用示例,它们可以很好的帮助你开始AI之旅。

1. Brain

 

使用Brain 可以轻松的创建神经网络,并且可通过输入/输出数据对它进行训练。因为训练神经网络会消耗比较多的资源,所以推荐在Node.js环境中而不是直接使用浏览器来训练神经网络。在官网上有个可以识别颜色(recognize color contrast)的小demo (PS:试了下,这个demo现在是404页面)。

2. Deep playground

 

这是一个寓教于乐的Web应用,可以让你以游戏的方式来探索神经网络的不同部分。它有一个友好的界面用于让你控制数据的输入,算法所用的神经元数量以及其它一些会影响输出结果的权值因素。这是一个开源项目,它是使用TypeScript编写的机器学习库并且有完善的文档,从中我们可以许多东西。

3. FlappyLearning

 

FlappyLearning 项目大约800行代码,这个项目包含一个机器学习库并且实现了一个很有趣的demo——学习玩 Flappy Bird 游戏。它使用了一种叫做 Neuroevolution 的AI技术,使用了受自然神经系统激发而产生的算法,可以从每次成功或失败的迭代中进行动态进行学习。

4. Synaptic

 
.png

Synaptic是一个架构无关(architecture-agnostic)且得到积极维护的Node.js和浏览器库,它允许开发者构建任何类型的神经网络。它有几个内置的架构,使得可以快速测试和比较不同机器学习算法间的异同。它还提供了介绍神经网络的文档及几个实用demo和其它可以帮助我们学习机器学习的教程。

5. Land Lines

 

Land Lines 是一个有趣的用于搜寻地球卫星图片的Chrome网络实验(web experiment)。这个应用无需服务调用:它完全运行在浏览器环境中,得益于机器学习的使用,WebGL也可以在移动设备中有很好的表现。你可以在GitHub 上浏览源码或者在这里阅读完整的示例。

6. ConvNetJS

 

尽管已不再被积极的维护,但ConvNetJS依然是JavaScriptp中最为先进的深度学习库之一。这个库最初由斯坦福大学开发,然后ConvNetJS开始在GitHub上流行,社区为它添加了许多特性和教程。ConvNetJS直接运行在浏览器环境中,支持多种学习技术,并且它接近底层原理使得它更适有较多神经网络方面经验的人。

7. Thing Translator

 

Thing Translator是一个网络实验,它可以让你的手机识别真是的物体并用不同的语言标注物体的名称。这个应用完全建立在web技术之上并且利用了Google提供的两种机器学习APIs——用于图像识别的Cloud Vision 和用于自然语言翻译的Translate API

8. Neurojs

 

Nerojs用于建立基于增强学习(reinforcement learning)的AI系统框架。不幸的是这个开源项目除了一个自动驾驶实验的demo外并没有完善的文档,这个demo对组成神经网络的不同部分有着很好的描述。这个库借助如现代化工具如:webpack 和babel,使用纯JavaScript进行开发。

9. Machine_learning

 

这也是一个允许我们仅使用JavaScript创建并训练神经网络的库。它很容易就可以安装到Node.js和客户端环境,并且拥有对开发人员十分友好的的API。这个库提供了许多示例,可以帮助你理解机器学习的核心原理。

10. DeepForge

 

DeepForge是一个用于深度学习且易于使用的开发环境。它允许你使用简单的图形接口创建神经网络,支持在远程机器上训练模型,并且内置版本控制系统。这个项目基于Node.js和MongoDB且运行在浏览器环境中。

彩蛋: Machine Learning in Javascript

 

Burak Kanber 发布的一些列优秀博文中讲述了机器学习的基本原理。这些教程写的很好且专门面向JavaScript开发者。如果你想深入理解机器学习,这些博文是很好的学习资源。

结语

尽管JavaScript的机器学习生态尚未成熟,但仍然建议使用上述资源来开启你的机器学习之路并对一些核心技术建立感性认识。正如文章中展示的一些实验,你也可以仅使用浏览器和少量JavaScript代码来创建许多有趣的东西。

推荐阅读

Machine Learning and AI
Tensorflow

版权声明

本文为作者原创,版权归作者雪飞鸿所有。 转载必须保留文章的完整性,且在页面明显位置处标明原文链接

如有问题, 请发送邮件和作者联系。

相关实践学习
使用PAI-EAS一键部署ChatGLM及LangChain应用
本场景中主要介绍如何使用模型在线服务(PAI-EAS)部署ChatGLM的AI-Web应用以及启动WebUI进行模型推理,并通过LangChain集成自己的业务数据。
机器学习概览及常见算法
机器学习(Machine Learning, ML)是人工智能的核心,专门研究计算机怎样模拟或实现人类的学习行为,以获取新的知识或技能,重新组织已有的知识结构使之不断改善自身的性能,它是使计算机具有智能的根本途径,其应用遍及人工智能的各个领域。 本课程将带你入门机器学习,掌握机器学习的概念和常用的算法。
目录
相关文章
|
21天前
|
机器学习/深度学习 自然语言处理 JavaScript
信息论、机器学习的核心概念:熵、KL散度、JS散度和Renyi散度的深度解析及应用
在信息论、机器学习和统计学领域中,KL散度(Kullback-Leibler散度)是量化概率分布差异的关键概念。本文深入探讨了KL散度及其相关概念,包括Jensen-Shannon散度和Renyi散度。KL散度用于衡量两个概率分布之间的差异,而Jensen-Shannon散度则提供了一种对称的度量方式。Renyi散度通过可调参数α,提供了更灵活的散度度量。这些概念不仅在理论研究中至关重要,在实际应用中也广泛用于数据压缩、变分自编码器、强化学习等领域。通过分析电子商务中的数据漂移实例,展示了这些散度指标在捕捉数据分布变化方面的独特优势,为企业提供了数据驱动的决策支持。
40 2
信息论、机器学习的核心概念:熵、KL散度、JS散度和Renyi散度的深度解析及应用
|
24天前
|
机器学习/深度学习 自然语言处理 前端开发
前端大模型入门:Transformer.js 和 Xenova-引领浏览器端的机器学习变革
除了调用API接口使用Transformer技术,你是否想过在浏览器中运行大模型?Xenova团队推出的Transformer.js,基于JavaScript,让开发者能在浏览器中本地加载和执行预训练模型,无需依赖服务器。该库利用WebAssembly和WebGPU技术,大幅提升性能,尤其适合隐私保护、离线应用和低延迟交互场景。无论是NLP任务还是实时文本生成,Transformer.js都提供了强大支持,成为构建浏览器AI应用的核心工具。
225 0
|
2月前
|
前端开发 JavaScript 开发者
Express.js与前端框架的集成:React、Vue和Angular的示例与技巧
本文介绍了如何将简洁灵活的Node.js后端框架Express.js与三大流行前端框架——React、Vue及Angular进行集成,以提升开发效率与代码可维护性。文中提供了详细的示例代码和实用技巧,展示了如何利用Express.js处理路由和静态文件服务,同时在React、Vue和Angular中构建用户界面,帮助开发者快速掌握前后端分离的开发方法,实现高效、灵活的Web应用构建。
47 3
|
3月前
|
机器学习/深度学习 存储 前端开发
实战揭秘:如何借助TensorFlow.js的强大力量,轻松将高效能的机器学习模型无缝集成到Web浏览器中,从而打造智能化的前端应用并优化用户体验
【8月更文挑战第31天】将机器学习模型集成到Web应用中,可让用户在浏览器内体验智能化功能。TensorFlow.js作为在客户端浏览器中运行的库,提供了强大支持。本文通过问答形式详细介绍如何使用TensorFlow.js将机器学习模型带入Web浏览器,并通过具体示例代码展示最佳实践。首先,需在HTML文件中引入TensorFlow.js库;接着,可通过加载预训练模型如MobileNet实现图像分类;然后,编写代码处理图像识别并显示结果;此外,还介绍了如何训练自定义模型及优化模型性能的方法,包括模型量化、剪枝和压缩等。
45 1
|
3月前
|
前端开发 JavaScript 开发者
前端JS按钮点击事件、跳出弹窗、遮罩的实战示例
本文提供了一个前端JS按钮点击事件、弹出式窗口和遮罩层的实战示例,包括HTML、CSS和JavaScript的具体实现代码,以及功能解析,演示了如何实现按钮点击后触发弹窗显示和遮罩层,并在2秒后自动关闭或点击遮罩层关闭弹窗的效果。
前端JS按钮点击事件、跳出弹窗、遮罩的实战示例
|
3月前
|
JavaScript 前端开发
【Azure Developer】在App Service上放置一个JS页面并引用msal.min.js成功获取AAD用户名示例
【Azure Developer】在App Service上放置一个JS页面并引用msal.min.js成功获取AAD用户名示例
|
3月前
|
JavaScript
js之三级联动示例
js之三级联动示例
44 1
|
3月前
|
机器学习/深度学习 运维 算法
深入探索机器学习中的支持向量机(SVM)算法:原理、应用与Python代码示例全面解析
【8月更文挑战第6天】在机器学习领域,支持向量机(SVM)犹如璀璨明珠。它是一种强大的监督学习算法,在分类、回归及异常检测中表现出色。SVM通过在高维空间寻找最大间隔超平面来分隔不同类别的数据,提升模型泛化能力。为处理非线性问题,引入了核函数将数据映射到高维空间。SVM在文本分类、图像识别等多个领域有广泛应用,展现出高度灵活性和适应性。
125 2
|
3月前
|
API UED 开发者
如何在Uno Platform中轻松实现流畅动画效果——从基础到优化,全方位打造用户友好的动态交互体验!
【8月更文挑战第31天】在开发跨平台应用时,确保用户界面流畅且具吸引力至关重要。Uno Platform 作为多端统一的开发框架,不仅支持跨系统应用开发,还能通过优化实现流畅动画,增强用户体验。本文探讨了Uno Platform中实现流畅动画的多个方面,包括动画基础、性能优化、实践技巧及问题排查,帮助开发者掌握具体优化策略,提升应用质量与用户满意度。通过合理利用故事板、减少布局复杂性、使用硬件加速等技术,结合异步方法与预设缓存技巧,开发者能够创建美观且流畅的动画效果。
74 0
|
3月前
|
JSON Dart 前端开发
分享15 个 JavaScript 代码示例及其 Dart 对应代码。
本文对比了React/React Native中的JavaScript语法与Flutter中的Dart语法,帮助开发者快速上手Flutter。内容涵盖JSON处理、数组操作、类型转换、条件判断等常见功能,如`JSON.stringify`与`JsonEncoder().convert`,`array.push`与`list.add`,`parseInt`与`int.parse`等,并提供了15个JavaScript与Dart代码示例对照。这对于从JavaScript转向Dart的开发者尤其有用。
21 0

热门文章

最新文章