Scrapy爬虫(4)爬取豆瓣电影Top250图片

简介:   在用Python的urllib和BeautifulSoup写过了很多爬虫之后,本人决定尝试著名的Python爬虫框架——Scrapy.   本次分享将详细讲述如何利用Scrapy来下载豆瓣电影Top250, 主要解决的问题有:如何利用ImagesPipeline来下载图片如何对下载后的图片重命名,这是因为Scrapy默认用Hash值来保存文件,这并不是我们想要的  首先我们要爬取的豆瓣电影Top250网页截图如下:   网页的结构并不复杂,所以,我们决定把所有的250部电影的图片都下载下来。

  在用Python的urllib和BeautifulSoup写过了很多爬虫之后,本人决定尝试著名的Python爬虫框架——Scrapy.
  本次分享将详细讲述如何利用Scrapy来下载豆瓣电影Top250, 主要解决的问题有:

  • 如何利用ImagesPipeline来下载图片
  • 如何对下载后的图片重命名,这是因为Scrapy默认用Hash值来保存文件,这并不是我们想要的

  首先我们要爬取的豆瓣电影Top250网页截图如下:


豆瓣电影Top250网页

  网页的结构并不复杂,所以,我们决定把所有的250部电影的图片都下载下来。接下来,就开始我们的Scrapy之旅啦~~
  首先我们新建一个Scrapy项目,叫做doubanMovie.

scrapy startproject doubanMovie

该项目的文件树形结构如下:


文件树形结构

  修改items.py如下:

# -*- coding: utf-8 -*-
import scrapy

class DoubanmovieItem(scrapy.Item):
    # two items: url and name of image
    url = scrapy.Field()
    img_name = scrapy.Field()

这是我们用来存放图片的url和name的部分。

  接着,在spiders文件夹下,新建爬虫(Spider)文件:doubanMovieSpider.py, 文件代码如下:

import scrapy
from scrapy.spiders import Spider  
from scrapy.selector import Selector  
from doubanMovie.items import DoubanmovieItem

class movieSpider(Spider):
    # name of Spider  
    name = "movie"
    #start urls
    start_urls = ["https://movie.douban.com/top250"] 
    for i in range(1,10):
        start_urls.append("https://movie.douban.com/top250?start=%d&filter="%(25*i))

    #parse function
    def parse(self, response):

        item = DoubanmovieItem()
        sel = Selector(response)
        images = sel.xpath('//*[@id="content"]/div/div[1]/ol/li')

        item['url'] = [] 
        item['img_name'] = []
        # append the url and name of the image in item
        for image in images:
            # extract url and name of the image   
            site = image.xpath('div/div[1]/a/img/@src').extract_first()
            img_name = image.xpath('div/div[1]/a/img/@alt').extract_first()

            item['url'].append(site)
            item['img_name'].append(img_name)

        yield item

该部分代码主要利用xpath来提出网页中的电影图片的url和name,并添加到item中。
  为了能够对下载后的图片进行重命名,我们需要修改pipeline.py文件,代码如下:

# -*- coding: utf-8 -*-

from scrapy.pipelines.images import ImagesPipeline
from scrapy.http import Request 

class DoubanmoviePipeline(object):
    def process_item(self, item, spider):
        return item

class MyImagesPipeline(ImagesPipeline):
    # yield meta for file_path() function
    def get_media_requests(self, item, info): 
        for url in item['url']: 
            yield Request(url, meta={'item': item, 'index':item['url'].index(url)})

    # rename the image
    def file_path(self, request, response=None, info=None):
        item = request.meta['item']
        index = request.meta['index']

        image_name = item['img_name'][index]
        return 'full/%s.jpg' % (image_name)

在这儿我们添加了MyImagesPipeline类,主要目的是用来对下载后的图片进行重命名。
  最后一步,也是关键的一步,就是修改settings.py文件,将其中的ROBOTSTXT_OBEY设置为False, 这是为了防止爬虫被禁,并且添加以下代码:

USER_AGENT = "Mozilla/5.0 (X11; Linux x86_64; rv:10.0) Gecko/20100101 Firefox/10.0"

ITEM_PIPELINES {'doubanMovie.pipelines.DoubanmoviePipeline': 2,  
                'doubanMovie.pipelines.MyImagesPipeline':1 }

IMAGES_URLS_FIELD = 'url'
IMAGES_STORE = r'.'

在上面的代码中,我们设置了USER_AGENT, 这是为了在Linux系统中模拟浏览器的设置,读者可以根据自己的系统和浏览器来设置不同的USER_AGENT. 同时, 我们又加了ITEM_PIPELINES管道和图片的保存路径。

  一切就绪,我们就可以运行爬虫啦。切换到spiders文件夹下,输入scrapy list可以查看爬虫的名字,输入scrapy crawl movie即可运行爬虫。


查看和运行爬虫

  movie爬虫的运行结果如下:

爬虫运行结果

该爬虫下载了250个文件,用时约13秒,效率惊人啊!
  下载后的图片保存在当前文件夹(spiders)下的full文件夹下,我们来看一下里面的内容:

下载图片

  Surprise!Wonderful! 里面有没有你喜欢的电影呢?

  本项目的Github地址为 https://github.com/percent4/doubanMovieSpider, 欢迎大家访问哦~~

注意:本人现已开通两个微信公众号: 因为Python(微信号为:python_math)以及轻松学会Python爬虫(微信号为:easy_web_scrape), 欢迎大家关注哦~~

目录
相关文章
|
2月前
|
数据采集 存储 JSON
Python网络爬虫:Scrapy框架的实战应用与技巧分享
【10月更文挑战第27天】本文介绍了Python网络爬虫Scrapy框架的实战应用与技巧。首先讲解了如何创建Scrapy项目、定义爬虫、处理JSON响应、设置User-Agent和代理,以及存储爬取的数据。通过具体示例,帮助读者掌握Scrapy的核心功能和使用方法,提升数据采集效率。
130 6
|
1月前
|
数据采集 Java Scala
淘宝图片爬虫:Scala与Curl的高效集成
淘宝图片爬虫:Scala与Curl的高效集成
|
2月前
|
数据采集 前端开发 中间件
Python网络爬虫:Scrapy框架的实战应用与技巧分享
【10月更文挑战第26天】Python是一种强大的编程语言,在数据抓取和网络爬虫领域应用广泛。Scrapy作为高效灵活的爬虫框架,为开发者提供了强大的工具集。本文通过实战案例,详细解析Scrapy框架的应用与技巧,并附上示例代码。文章介绍了Scrapy的基本概念、创建项目、编写简单爬虫、高级特性和技巧等内容。
106 4
|
2月前
|
数据采集 中间件 API
在Scrapy爬虫中应用Crawlera进行反爬虫策略
在Scrapy爬虫中应用Crawlera进行反爬虫策略
|
3月前
|
消息中间件 数据采集 数据库
小说爬虫-03 爬取章节的详细内容并保存 将章节URL推送至RabbitMQ Scrapy消费MQ 对数据进行爬取后写入SQLite
小说爬虫-03 爬取章节的详细内容并保存 将章节URL推送至RabbitMQ Scrapy消费MQ 对数据进行爬取后写入SQLite
47 1
|
3月前
|
消息中间件 数据采集 数据库
小说爬虫-02 爬取小说详细内容和章节列表 推送至RabbitMQ 消费ACK确认 Scrapy爬取 SQLite
小说爬虫-02 爬取小说详细内容和章节列表 推送至RabbitMQ 消费ACK确认 Scrapy爬取 SQLite
30 1
|
5月前
|
机器学习/深度学习 数据采集 数据可视化
基于爬虫和机器学习的招聘数据分析与可视化系统,python django框架,前端bootstrap,机器学习有八种带有可视化大屏和后台
本文介绍了一个基于Python Django框架和Bootstrap前端技术,集成了机器学习算法和数据可视化的招聘数据分析与可视化系统,该系统通过爬虫技术获取职位信息,并使用多种机器学习模型进行薪资预测、职位匹配和趋势分析,提供了一个直观的可视化大屏和后台管理系统,以优化招聘策略并提升决策质量。
273 4
|
6月前
|
数据采集 存储 JSON
从零到一构建网络爬虫帝国:HTTP协议+Python requests库深度解析
【7月更文挑战第31天】在网络数据的海洋中,使用Python的`requests`库构建网络爬虫就像探索未知的航船。HTTP协议指导爬虫与服务器交流,收集信息。HTTP请求包括请求行、头和体,响应则含状态行、头和体。`requests`简化了发送各种HTTP请求的过程。
105 4
|
5月前
|
数据采集 存储 搜索推荐
打造个性化网页爬虫:从零开始的Python教程
【8月更文挑战第31天】在数字信息的海洋中,网页爬虫是一艘能够自动搜集网络数据的神奇船只。本文将引导你启航,用Python语言建造属于你自己的网页爬虫。我们将一起探索如何从无到有,一步步构建一个能够抓取、解析并存储网页数据的基础爬虫。文章不仅分享代码,更带你理解背后的逻辑,让你能在遇到问题时自行找到解决方案。无论你是编程新手还是有一定基础的开发者,这篇文章都会为你打开一扇通往数据世界的新窗。
|
3月前
|
数据采集 存储 数据挖掘
深入探索 Python 爬虫:高级技术与实战应用
本文介绍了Python爬虫的高级技术,涵盖并发处理、反爬虫策略(如验证码识别与模拟登录)及数据存储与处理方法。通过asyncio库实现异步爬虫,提升效率;利用tesseract和requests库应对反爬措施;借助SQLAlchemy和pandas进行数据存储与分析。实战部分展示了如何爬取电商网站的商品信息及新闻网站的文章内容。提醒读者在实际应用中需遵守法律法规。
222 66