GeoJSON C#判断某一点是否在某一区域范围之内

简介: GeoJSON是一种对各种地理数据结构进行编码的格式,基于Javascript对象表示法的地理空间信息数据交换格式。GeoJSON对象可以表示几何、特征或者特征集合。GeoJSON支持下面几何类型:点、线、面、多点、多线、多面和几何集合。

GeoJSON是一种对各种地理数据结构进行编码的格式,基于Javascript对象表示法的地理空间信息数据交换格式。GeoJSON对象可以表示几何、特征或者特征集合。GeoJSON支持下面几何类型:点、线、面、多点、多线、多面和几何集合。GeoJSON里的特征包含一个几何对象和其他属性,特征集合表示一系列特征。

public class PositionAlgorithmHelper
    {
        /// <summary>
        /// 判断当前位置是否在不规则形状里面
        /// </summary>
        /// <param name="nvert">不规则形状的定点数</param>
        /// <param name="vertx">当前x坐标</param>
        /// <param name="verty">当前y坐标</param>
        /// <param name="testx">不规则形状x坐标集合</param>
        /// <param name="testy">不规则形状y坐标集合</param>
        /// <returns></returns>
        public static bool PositionPnpoly(int nvert, List<double> vertx, List<double> verty, double testx, double testy)
        {
            int i, j, c = 0;
            for (i = 0, j = nvert - 1; i < nvert; j = i++)
            {
                if (((verty[i] > testy) != (verty[j] > testy)) && (testx < (vertx[j] - vertx[i]) * (testy - verty[i]) / (verty[j] - verty[i]) + vertx[i]))
                {
                    c = 1 + c; ;
                }
            }
            if (c % 2 == 0)
            {
                return false;
            }
            else
            {
                return true;
            }
        }



        /// <summary>  
        /// 判断点是否在多边形内.  
        /// ----------原理----------  
        /// 注意到如果从P作水平向左的射线的话,如果P在多边形内部,那么这条射线与多边形的交点必为奇数,  
        /// 如果P在多边形外部,则交点个数必为偶数(0也在内)。  
        /// 所以,我们可以顺序考虑多边形的每条边,求出交点的总个数。还有一些特殊情况要考虑。假如考虑边(P1,P2),  
        /// 1)如果射线正好穿过P1或者P2,那么这个交点会被算作2次,处理办法是如果P的从坐标与P1,P2中较小的纵坐标相同,则直接忽略这种情况  
        /// 2)如果射线水平,则射线要么与其无交点,要么有无数个,这种情况也直接忽略。  
        /// 3)如果射线竖直,而P0的横坐标小于P1,P2的横坐标,则必然相交。  
        /// 4)再判断相交之前,先判断P是否在边(P1,P2)的上面,如果在,则直接得出结论:P再多边形内部。  
        /// </summary>  
        /// <param name="checkPoint">要判断的点</param>  
        /// <param name="polygonPoints">多边形的顶点</param>  
        /// <returns></returns>  
        public static bool IsInPolygon2(Position checkPoint, List<Position> polygonPoints)
        {
            int counter = 0;
            int i;
            double xinters;
            Position p1, p2;
            int pointCount = polygonPoints.Count;
            p1 = polygonPoints[0];
            for (i = 1; i <= pointCount; i++)
            {
                p2 = polygonPoints[i % pointCount];
                if (checkPoint.y > Math.Min(p1.y, p2.y)//校验点的Y大于线段端点的最小Y  
                    && checkPoint.y <= Math.Max(p1.y, p2.y))//校验点的Y小于线段端点的最大Y  
                {
                    if (checkPoint.x <= Math.Max(p1.x, p2.x))//校验点的X小于等线段端点的最大X(使用校验点的左射线判断).  
                    {
                        if (p1.y != p2.y)//线段不平行于X轴  
                        {
                            xinters = (checkPoint.y - p1.y) * (p2.x - p1.x) / (p2.y - p1.y) + p1.x;
                            if (p1.x == p2.x || checkPoint.x <= xinters)
                            {
                                counter++;
                            }
                        }
                    }

                }
                p1 = p2;
            }

            if (counter % 2 == 0)
            {
                return false;
            }
            else
            {
                return true;
            }
        }

        /// <summary>  
        /// 判断点是否在多边形内.  
        /// ----------原理----------  
        /// 注意到如果从P作水平向左的射线的话,如果P在多边形内部,那么这条射线与多边形的交点必为奇数,  
        /// 如果P在多边形外部,则交点个数必为偶数(0也在内)。  
        /// </summary>  
        /// <param name="checkPoint">要判断的点</param>  
        /// <param name="polygonPoints">多边形的顶点</param>  
        /// <returns></returns>  
        public static bool IsInPolygon(Position checkPoint, List<Position> polygonPoints)
        {
            bool inside = false;
            int pointCount = polygonPoints.Count;
            Position p1, p2;
            for (int i = 0, j = pointCount - 1; i < pointCount; j = i, i++)//第一个点和最后一个点作为第一条线,之后是第一个点和第二个点作为第二条线,之后是第二个点与第三个点,第三个点与第四个点...  
            {
                p1 = polygonPoints[i];
                p2 = polygonPoints[j];
                if (checkPoint.y < p2.y)
                {//p2在射线之上  
                    if (p1.y <= checkPoint.y)
                    {//p1正好在射线中或者射线下方  
                        if ((checkPoint.y - p1.y) * (p2.x - p1.x) > (checkPoint.x - p1.x) * (p2.y - p1.y))//斜率判断,在P1和P2之间且在P1P2右侧  
                        {
                            //射线与多边形交点为奇数时则在多边形之内,若为偶数个交点时则在多边形之外。  
                            //由于inside初始值为false,即交点数为零。所以当有第一个交点时,则必为奇数,则在内部,此时为inside=(!inside)  
                            //所以当有第二个交点时,则必为偶数,则在外部,此时为inside=(!inside)  
                            inside = (!inside);
                        }
                    }
                }
                else if (checkPoint.y < p1.y)
                {
                    //p2正好在射线中或者在射线下方,p1在射线上  
                    if ((checkPoint.y - p1.y) * (p2.x - p1.x) < (checkPoint.x - p1.x) * (p2.y - p1.y))//斜率判断,在P1和P2之间且在P1P2右侧  
                    {
                        inside = (!inside);
                    }
                }
            }
            return inside;
        }  

    }
    public class Position
    {
        /// <summary>
        /// 纬度
        /// </summary>
        public double x { get; set; }

        /// <summary>
        /// 经度
        /// </summary>
        public double y { get; set; }
    }

测试:红色区域是许多坐标组成的不规则图像,记录下坐标位置,进行坐标范围内和范围外任取一点进行测试.可以判断这一点是否在范围之内。

    class Program
    {
        static void Main(string[] args)
        {
            test1();
        }

        /// <summary>
        /// test1
        /// </summary>
        public static void test1()
        {
            //不规则图像坐标
            List<Position> position = new List<Position>();
            position.Add(new Position() { x = 6, y = 0 });
            position.Add(new Position() { x = 10, y = 2 });
            position.Add(new Position() { x = 16, y = 2 });
            position.Add(new Position() { x = 20, y = 6 });
            position.Add(new Position() { x = 14, y = 10 });
            position.Add(new Position() { x = 16, y = 6 });
            position.Add(new Position() { x = 12, y = 6 });
            position.Add(new Position() { x = 14, y = 8 });
            position.Add(new Position() { x = 10, y = 8 });
            position.Add(new Position() { x = 8, y = 6 });
            position.Add(new Position() { x = 12, y = 4 });
            position.Add(new Position() { x = 6, y = 4 });
            position.Add(new Position() { x = 8, y = 2 });

            //用户当前位置坐标
            List<Position> userPositions = new List<Position>();
            userPositions.Add(new Position() { x = 14, y = 4 });
            userPositions.Add(new Position() { x = 15, y = 4 });
            userPositions.Add(new Position() { x = 10, y = 6 });
            userPositions.Add(new Position() { x = 8, y = 5 });

            //不规则图像x坐标集合
            List<double> xList = position.Select(x => x.x).ToList();
            //不规则图像y坐标集合
            List<double> yList = position.Select(x => x.y).ToList();

            foreach (var userPosition in userPositions)
            {
                bool result = PositionAlgorithmHelper.PositionPnpoly(position.Count, xList, yList, userPosition.x, userPosition.y);

                if (result)
                {
                    Console.WriteLine(string.Format("{0},{1}【在】坐标内", userPosition.x, userPosition.y));
                }
                else
                {
                    Console.WriteLine(string.Format("{0},{1}【不在】坐标内", userPosition.x, userPosition.y));
                }
            }
        }
    }

 

博客内容仅代表个人观点,如发现阐述有误,麻烦指正,谢谢!
目录
相关文章
|
编解码 索引 Python
python--根据任意非网格经纬度坐标,找到均匀网格点上最接近的经纬度坐标
需求:根据非规则经纬度坐标,查找均匀网格点上最接近的经纬度坐标,并提取该点上的变量。
python--根据任意非网格经纬度坐标,找到均匀网格点上最接近的经纬度坐标
|
8月前
leetcode-363:矩形区域不超过 K 的最大数值和
leetcode-363:矩形区域不超过 K 的最大数值和
44 0
|
8月前
|
算法 小程序 API
uniapp显示当前位置与所传入位置的距离
uniapp显示当前位置与所传入位置的距离
419 0
|
人工智能 数据可视化 定位技术
查看选定区域Landsat数据覆盖情况
查看选定区域Landsat数据覆盖情况
|
JavaScript API
如何判断元素是否在可视区域内
如何判断元素是否在可视区域内
|
C++ 计算机视觉
C++使用opencv判断一个点是否在多边形之内
C++使用opencv判断一个点是否在多边形之内
209 0
【CCCC】L3-025 那就别担心了 (30分),dfs搜索起点到终点的路径条数。
【CCCC】L3-025 那就别担心了 (30分),dfs搜索起点到终点的路径条数。
158 0
|
JavaScript
JS案例:小球拖动,记录轨迹,并原路返回
JS案例:小球拖动,记录轨迹,并原路返回
145 0
|
JavaScript
可视区域判断(js三种方式判断)
可视区域判断(js三种方式判断)
145 0