java单例模式深度解析

本文涉及的产品
全局流量管理 GTM,标准版 1个月
公共DNS(含HTTPDNS解析),每月1000万次HTTP解析
云解析 DNS,旗舰版 1个月
简介: 应用场景由于单例模式只生成一个实例, 减少了系统性能开销(如: 当一个对象的产生需要比较多的资源时, 如读取配置, 产生其他依赖对象, 则可以通过在应用启动时直接产生一个单例对象, 然后永久驻留内存的方式来解决)W...

应用场景

由于单例模式只生成一个实例, 减少了系统性能开销(如: 当一个对象的产生需要比较多的资源时, 如读取配置, 产生其他依赖对象, 则可以通过在应用启动时直接产生一个单例对象, 然后永久驻留内存的方式来解决)

  • Windows中的任务管理器;
  • 文件系统, 一个操作系统只能有一个文件系统;
  • 数据库连接池的设计与实现;
  • Spring中, 一个Component就只有一个实例Java-Web中, 一个Servlet类只有一个实例;

实现要点

  • 声明为private来隐藏构造器
  • private static Singleton实例
  • 声明为public来暴露实例获取方法

单例模式主要追求三个方面性能

  • 线程安全
  • 调用效率高
  • 延迟加载

实现方式

主要有五种实现方式,懒汉式(延迟加载,使用时初始化),饿汉式(声明时初始化),双重检查,静态内部类,枚举。

懒汉式,线程不安全的实现

由于没有同步,多个线程可能同时检测到实例没有初始化而分别初始化,从而破坏单例约束。

public class Singleton {
    private static Singleton instance;
    private Singleton() {
    };
    public static Singleton getInstance() {
        if (instance == null) {
            instance = new Singleton();
        }
        return instance;
    }
}  

懒汉式,线程安全但效率低下的实现

由于对象只需要在初次初始化时需要同步,多数情况下不需要互斥的获得对象,加锁会造成巨大无意义的资源消耗

public class Singleton {
    private static Singleton instance;
    private Singleton() {
    };
    public static synchronized Singleton getInstance() {
        if (instance == null) {
            instance = new Singleton();
        }
        return instance;
    }
}  

双重检查

这种方法对比于上面的方法确保了只有在初始化的时候需要同步,当初始化完成后,再次调用getInstance不会再进入synchronized块。
NOTE

内部检查是必要的

由于在同步块外的if语句中可能有多个线程同时检测到instance为null,同时想要获取锁,所以在进入同步块后还需要再判断是否为null,避免因为后续获得锁的线程再次对instance进行初始化

instance声明为volatile类型是必要的。

  • 指令重排
    由于初始化操作 instance=new Singleton()是非原子操作的,主要包含三个过程
    1. 给instance分配内存
    2. 调用构造函数初始化instance
    3. 将instance指向分配的空间(instance指向分配空间后,instance就不为空了)
      虽然synchronized块保证了只有一个线程进入同步块,但是在同步块内部JVM出于优化需要可能进行指令重排,例如(1->3->2),instance还没有初始化之前其他线程就会在外部检查到instance不为null,而返回还没有初始化的instance,从而造成逻辑错误。
      • volatile保证变量的可见性
        volatile类型变量可以保证写入对于读取的可见性,JVM不会将volatile变量上的操作与其他内存操作一起重新排序,volatile变量不会被缓存在寄存器,因此保证了检测instance状态时总是检测到instance的最新状态。

注意:volatile并不保证操作的原子性,例如即使count声明为volatile类型,count++操作被分解为读取->写入两个操作,虽然读取到的是count的最新值,但并不能保证读取与写入之间不会有其他线程再次写入,从而造成逻辑错误

public class Singleton {
    private static volatile Singleton instance;
    private Singleton() {
    };
    public static Singleton getInstance() {
        if (instance == null) {
            synchronized (Singleton.class) {
                if (instance == null) {
                    instance = new Singleton();
                }
            }
        }
        return instance;
    }
}  

饿汉式

这种方式基于单ClassLoder机制,instance在类加载时进行初始化,避免了同步问题。饿汉式的优势在于实现简单,劣势在于不是懒加载模式(lazy initialization)

  • 在需要实例之前就完成了初始化,在单例较多的情况下,会造成内存占用,加载速度慢问题
  • 由于在调用getInstance()之前就完成了初始化,如果需要给getInstance()函数传入参数,将会无法实现
public class Singleton {
    private static final Singleton instance = new Singleton();
    private Singleton() {
    };
    public static Singleton getInstance() {
        return instance;
    }
}  

静态内部类

由于内部类不会在类的外部被使用,所以只有在调用getInstance()方法时才会被加载。同时依赖JVM的ClassLoader类加载机制保证了不会出现同步问题。

public class Singleton {
    private Singleton() {
    };
    public static Singleton getInstance() {
        return Holder.instance;
    }
    private static class Holder{
        private static Singleton instance = new Singleton();
    }
}  

枚举方法

参见枚举类解析
- 线程安全
由于枚举类的会在编译期编译为继承自java.lang.Enum的类,其构造函数为私有,不能再创建枚举对象,枚举对象的声明和初始化都是在static块中,所以由JVM的ClassLoader机制保证了线程的安全性。但是不能实现延迟加载
- 序列化
由于枚举类型采用了特殊的序列化方法,从而保证了在一个JVM中只能有一个实例。

  • 枚举类的实例都是static的,且存在于一个数组中,可以用values()方法获取该数组
  • 在序列化时,只输出代表枚举类型的名字属性 name
  • 反序列化时,根据名字在静态的数组中查找对应的枚举对象,由于没有创建新的对象,因而保证了一个JVM中只有一个对象
public enum Singleton {
    INSTANCE;
    public String error(){
        return "error";
    }
} 

单例模式的破坏与防御

反射

对于枚举类,该破解方法不适用。

import java.lang.reflect.Constructor;
public class TestCase {
    public void testBreak() throws Exception {
        Class<Singleton> clazz = (Class<Singleton>) Class.forName("Singleton");
        Constructor<Singleton> constructor = clazz.getDeclaredConstructor();
        constructor.setAccessible(true);
        Singleton instance1 = constructor.newInstance();
        Singleton instance2 = constructor.newInstance();
        System.out.println("singleton? " + (instance1 == instance2));
    }
    public static void main(String[] args) throws Exception{
        new TestCase().testBreak();
    }
}  

序列化

对于枚举类,该破解方法不适用。
该测试首先需要声明Singleton为实现了可序列化接口public class Singleton implements Serializable

public class TestCase {
    private static final String SYSTEM_FILE = "save.txt";
    public void testBreak() throws Exception {
        Singleton instance1 = Singleton.getInstance();
        ObjectOutputStream oos = new ObjectOutputStream(new FileOutputStream(SYSTEM_FILE));
        oos.writeObject(instance1);
        ObjectInputStream ois = new ObjectInputStream(new FileInputStream(SYSTEM_FILE));
        Singleton instance2 = (Singleton) ois.readObject();
        System.out.println("singleton? " + (instance1 == instance2));
    }
    public static void main(String[] args) throws Exception{
        new TestCase().testBreak();
    }
}  

ClassLoader

JVM中存在两种ClassLoader,启动内装载器(bootstrap)和用户自定义装载器(user-defined class loader),在一个JVM中可能存在多个ClassLoader,每个ClassLoader拥有自己的NameSpace。一个ClassLoader只能拥有一个class对象类型的实例,但是不同的ClassLoader可能拥有相同的class对象实例,这时可能产生致命的问题。

防御

对于序列化与反序列化,我们需要添加一个自定义的反序列化方法,使其不再创建对象而是直接返回已有实例,就可以保证单例模式。
我们再次用下面的类进行测试,就发现结果为true。

public final class Singleton {
    private Singleton() {
    }
    private static final Singleton INSTANCE = new Singleton();
    public static Singleton getInstance() {
        return INSTANCE;
    }
    private Object readResolve() throws ObjectStreamException {
        // instead of the object we're on,
        // return the class variable INSTANCE
        return INSTANCE;
    }
public class TestCase {
    private static final String SYSTEM_FILE = "save.txt";
    public void testBreak() throws Exception {
        Singleton instance1 = Singleton.getInstance();
        ObjectOutputStream oos = new ObjectOutputStream(new FileOutputStream(SYSTEM_FILE));
        oos.writeObject(instance1);
        ObjectInputStream ois = new ObjectInputStream(new FileInputStream(SYSTEM_FILE));
        Singleton instance2 = (Singleton) ois.readObject();
        System.out.println("singleton? " + (instance1 == instance2));
    }
    public static void main(String[] args) throws Exception {
        new TestCase().testBreak();
    }
}  
}  

单例模式性能总结

方式 优点 缺点
饿汉式 线程安全, 调用效率高 不能延迟加载
懒汉式 线程安全, 可以延迟加载 调用效率不高
双重检测锁式 线程安全, 调用效率高, 可以延迟加载 -
静态内部类式 线程安全, 调用效率高, 可以延迟加载 -
枚举单例 线程安全, 调用效率高 不能延迟加载

单例性能测试

测试结果:

  1. HungerSingleton 共耗时: 30 毫秒
  2. LazySingleton 共耗时: 48 毫秒
  3. DoubleCheckSingleton 共耗时: 25 毫秒
  4. StaticInnerSingleton 共耗时: 16 毫秒
  5. EnumSingleton 共耗时: 6 毫秒

在不考虑延迟加载的情况下,枚举类型获得了最好的效率,懒汉模式由于每次方法都需要获取锁,所以效率最低,静态内部类与双重检查的效果类似。考虑到枚举可以轻松有效的避免序列化与反射,所以枚举是较好实现单例模式的方法。

public class TestCase {
    private static final String SYSTEM_FILE = "save.txt";
    private static final int THREAD_COUNT = 10;
    private static final int CIRCLE_COUNT = 100000;
    public void testSingletonPerformance() throws IOException, InterruptedException {
        final CountDownLatch latch = new CountDownLatch(THREAD_COUNT);
        FileWriter writer = new FileWriter(new File(SYSTEM_FILE), true);
        long start = System.currentTimeMillis();
        for (int i = 0; i < THREAD_COUNT; ++i) {
            new Thread(new Runnable() {
                @Override
                public void run() {
                    for (int i = 0; i < CIRCLE_COUNT; ++i) {
                        Object instance = Singleton.getInstance();
                    }
                    latch.countDown();
                }
            }).start();
        }
        latch.await();
        long end = System.currentTimeMillis();
        writer.append("Singleton 共耗时: " + (end - start) + " 毫秒\n");
        writer.close();
    }
    public static void main(String[] args) throws Exception{
        new TestCase().testSingletonPerformance();
    }
}  

补充知识

类加载机制

static关键字的作用是把类的成员变成类相关,而不是实例相关,static块会在类首次被用到的时候进行加载,不是对象创建时,所以static块具有线程安全性
- 普通初始化块
当Java创建一个对象时, 系统先为对象的所有实例变量分配内存(前提是该类已经被加载过了), 然后开始对这些实例变量进行初始化, 顺序是: 先执行初始化块或声明实例变量时指定的初始值(这两处执行的顺序与他们在源代码中排列顺序相同), 再执行构造器里指定的初始值.

  • 静态初始化块
    又名类初始化块(普通初始化块负责对象初始化, 类初始化块负责对类进行初始化). 静态初始化块是类相关的, 系统将在类初始化阶段静态初始化, 而不是在创建对象时才执行. 因此静态初始化块总是先于普通初始化块执行.

  • 执行顺序
    系统在类初始化以及对象初始化时, 不仅会执行本类的初始化块[static/non-static], 而且还会一直上溯到java.lang.Object类, 先执行Object类中的初始化块[static/non-static], 然后执行其父类的, 最后是自己.
    顶层类(初始化块, 构造器) -> … -> 父类(初始化块, 构造器) -> 本类(初始化块, 构造器)

  • 小结
    static{} 静态初始化块会在类加载过程中执行;
    {} 则只是在对象初始化过程中执行, 但先于构造器;

内部类

  • 内部类访问权限

    1. Java 外部类只有两种访问权限:public/default, 而内部类则有四种访问权限:private/default/protected/public. 而且内部类还可以使用static修饰;内部类可以拥有private访问权限、protected访问权限、public访问权限及包访问权限。如果成员内部类Inner用private修饰,则只能在外部类的内部访问,如果用public修饰,则任何地方都能访问;如果用protected修饰,则只能在同一个包下或者继承外部类的情况下访问;如果是默认访问权限,则只能在同一个包下访问。这一点和外部类有一点不一样,外部类只能被public和包访问两种权限修饰。成员内部类可以看做是外部类的一个成员,所以可以像类的成员一样拥有多种权限修饰。
    2. 内部类分为成员内部类与局部内部类, 相对来说成员内部类用途更广泛, 局部内部类用的较少(匿名内部类除外), 成员内部类又分为静态(static)内部类与非静态内部类, 这两种成员内部类同样要遵守static与非static的约束(如static内部类不能访问外部类的非静态成员等)
  • 非静态内部类

    1. 非静态内部类在外部类内使用时, 与平时使用的普通类没有太大区别;
    2. Java不允许在非static内部类中定义static成员,除非是static final的常量类型
    3. 如果外部类成员变量, 内部类成员变量与内部类中的方法里面的局部变量有重名, 则可通过this, 外部类名.this加以区分.
    4. 非静态内部类的成员可以访问外部类的private成员, 但反之不成立, 内部类的成员不被外部类所感知. 如果外部类需要访问内部类中的private成员, 必须显示创建内部类实例, 而且内部类的private权限对外部类也是不起作用的:
  • 静态内部类

    1. 使用static修饰内部类, 则该内部类隶属于该外部类本身, 而不属于外部类的某个对象.
    2. 由于static的作用, 静态内部类不能访问外部类的实例成员, 而反之不然;
  • 匿名内部类
    如果(方法)局部变量需要被匿名内部类访问, 那么该局部变量需要使用final修饰.

枚举

  1. 枚举类继承了java.lang.Enum, 而不是Object, 因此枚举不能显示继承其他类; 其中Enum实现了Serializable和Comparable接口(implements Comparable, Serializable);
  2. 非抽象的枚举类默认使用final修饰,因此枚举类不能派生子类;
  3. 枚举类的所有实例必须在枚举类的第一行显示列出(枚举类不能通过new来创建对象); 并且这些实例默认/且只能是public static final的;
  4. 枚举类的构造器默认/且只能是private;
  5. 枚举类通常应该设计成不可变类, 因此建议成员变量都用private final修饰;
  6. 枚举类不能使用abstract关键字将枚举类声明成抽象类(因为枚举类不允许有子类), 但如果枚举类里面有抽象方法, 或者枚举类实现了某个接口, 则定义每个枚举值时必须为抽象方法提供实现,
目录
相关文章
|
3天前
|
存储 Java 编译器
Java内存模型(JMM)深度解析####
本文深入探讨了Java内存模型(JMM)的工作原理,旨在帮助开发者理解多线程环境下并发编程的挑战与解决方案。通过剖析JVM如何管理线程间的数据可见性、原子性和有序性问题,本文将揭示synchronized关键字背后的机制,并介绍volatile关键字和final关键字在保证变量同步与不可变性方面的作用。同时,文章还将讨论现代Java并发工具类如java.util.concurrent包中的核心组件,以及它们如何简化高效并发程序的设计。无论你是初学者还是有经验的开发者,本文都将为你提供宝贵的见解,助你在Java并发编程领域更进一步。 ####
|
1天前
|
存储 设计模式 分布式计算
Java中的多线程编程:并发与并行的深度解析####
在当今软件开发领域,多线程编程已成为提升应用性能、响应速度及资源利用率的关键手段之一。本文将深入探讨Java平台上的多线程机制,从基础概念到高级应用,全面解析并发与并行编程的核心理念、实现方式及其在实际项目中的应用策略。不同于常规摘要的简洁概述,本文旨在通过详尽的技术剖析,为读者构建一个系统化的多线程知识框架,辅以生动实例,让抽象概念具体化,复杂问题简单化。 ####
|
18小时前
|
存储 分布式计算 Java
存算分离与计算向数据移动:深度解析与Java实现
【11月更文挑战第10天】随着大数据时代的到来,数据量的激增给传统的数据处理架构带来了巨大的挑战。传统的“存算一体”架构,即计算资源与存储资源紧密耦合,在处理海量数据时逐渐显露出其局限性。为了应对这些挑战,存算分离(Disaggregated Storage and Compute Architecture)和计算向数据移动(Compute Moves to Data)两种架构应运而生,成为大数据处理领域的热门技术。
9 2
|
20小时前
|
设计模式 安全 Java
Java编程中的单例模式:理解与实践
【10月更文挑战第31天】在Java的世界里,单例模式是一种优雅的解决方案,它确保一个类只有一个实例,并提供一个全局访问点。本文将深入探讨单例模式的实现方式、使用场景及其优缺点,同时提供代码示例以加深理解。无论你是Java新手还是有经验的开发者,掌握单例模式都将是你技能库中的宝贵财富。
|
19小时前
|
设计模式 安全 Java
Java编程中的单例模式深入解析
【10月更文挑战第31天】在编程世界中,设计模式就像是建筑中的蓝图,它们定义了解决常见问题的最佳实践。本文将通过浅显易懂的语言带你深入了解Java中广泛应用的单例模式,并展示如何实现它。
|
9天前
|
监控 安全 Java
在 Java 中使用线程池监控以及动态调整线程池时需要注意什么?
【10月更文挑战第22天】在进行线程池的监控和动态调整时,要综合考虑多方面的因素,谨慎操作,以确保线程池能够高效、稳定地运行,满足业务的需求。
81 38
|
7天前
|
安全 Java
java 中 i++ 到底是否线程安全?
本文通过实例探讨了 `i++` 在多线程环境下的线程安全性问题。首先,使用 100 个线程分别执行 10000 次 `i++` 操作,发现最终结果小于预期的 1000000,证明 `i++` 是线程不安全的。接着,介绍了两种解决方法:使用 `synchronized` 关键字加锁和使用 `AtomicInteger` 类。其中,`AtomicInteger` 通过 `CAS` 操作实现了高效的线程安全。最后,通过分析字节码和源码,解释了 `i++` 为何线程不安全以及 `AtomicInteger` 如何保证线程安全。
java 中 i++ 到底是否线程安全?
|
2天前
|
Java 开发者
在Java多线程编程的世界里,Lock接口正逐渐成为高手们的首选,取代了传统的synchronized关键字
在Java多线程编程的世界里,Lock接口正逐渐成为高手们的首选,取代了传统的synchronized关键字
13 4
|
2天前
|
消息中间件 供应链 Java
掌握Java多线程编程的艺术
【10月更文挑战第29天】 在当今软件开发领域,多线程编程已成为提升应用性能和响应速度的关键手段之一。本文旨在深入探讨Java多线程编程的核心技术、常见问题以及最佳实践,通过实际案例分析,帮助读者理解并掌握如何在Java应用中高效地使用多线程。不同于常规的技术总结,本文将结合作者多年的实践经验,以故事化的方式讲述多线程编程的魅力与挑战,旨在为读者提供一种全新的学习视角。
20 3
|
8天前
|
安全 Java
在 Java 中使用实现 Runnable 接口的方式创建线程
【10月更文挑战第22天】通过以上内容的介绍,相信你已经对在 Java 中如何使用实现 Runnable 接口的方式创建线程有了更深入的了解。在实际应用中,需要根据具体的需求和场景,合理选择线程创建方式,并注意线程安全、同步、通信等相关问题,以确保程序的正确性和稳定性。

推荐镜像

更多