Instagram 架构分析笔记

本文涉及的产品
云原生数据库 PolarDB MySQL 版,通用型 2核8GB 50GB
应用型负载均衡 ALB,每月750个小时 15LCU
网络型负载均衡 NLB,每月750个小时 15LCU
简介:

Instagram 架构分析笔记
全部 技术博客

Instagram团队上个月才迎来第 7 名员工,是的,7个人的团队。作为 iPhone 上最火爆的图片类工具,instagram 用户数量已经超过 1400 万,图片数量超过 1.5 亿张。不得不说,这真他妈是个业界奇迹。

几天前,只有三个人的 Instagram 工程师团队发布了一篇文章:What Powers Instagram: Hundreds of Instances, Dozens of Technologies,披露了 Instagram 架构的一些信息,足够勾起大多数人的好奇心。读罢做点笔记,各种线索还是有一定参考价值的。能打开原文的建议直接读原文。

Instagram 开发团队奉行的三个核心原则:
Keep it very simple (极简主义)
Don’t re-invent the wheel (不重复发明轮子)
Go with proven and solid technologies when you can(能用就用靠谱的技术)
OS/主机

操作系统的选择,在Amazon EC2上跑 Ubuntu Linux 11.04 (Natty Narwhal) ,这个版本经过验证在 EC2 上够稳定。因为只有三名工程师,只有三名工程师,所以自己部署机器到IDC是不靠谱的事情。幸好有亚马逊。

负载均衡

此前曾用过两台 Nginx 做DNS轮询承载前端请求,这样做会有副作用,现在已经迁移到Amazon的ELB(Elastic Load Balancer),起了三个 Nginx 实例,在 ELB 层停掉了SSL, 以缓解CPU压力。DNS 服务使用 Amazon Route53 服务。

应用服务器

启用了 25 个 Django 实例,运行在 High-CPUExtra-Large 类型的服务器实例上,之所以用 High-CPUExtra-Large 实例是因为应用请求是CPU密集型而非IO密集型。

使用Gunicorn作为 WSGI 服务器。过去曾用过 Apache 下的 mod_wsgi 模块,不过发现 Gunicorn 更容易配置并且节省CPU资源。使用Fabric加速部署。

数据存储

用户信息、图片元数据、标签等大部分数据存储在 PostgreSQL 中。主要的 Shard 数据库集群有 12个节点。

实践中发现 Amazon 的网络磁盘系统单位时间内寻道能力不行,所以有必要将数据尽量放到内存中。创建了软RAID以提升IO能力,使用的Mdadm工具进行RAID管理。

管理内存中的数据,vmtouch这个小工具值得推荐。

PostgreSQL 设置为 Master-Replica 方式,流复制模式。利用 EBS 的快照进行数据库备份。使用 XFS 文件系统,以便和快照服务充分配合。 使用repmgr这个小工具做 PostgreSQL 复制管理器器。

连接池管理,用了Pgbouncer。Christophe Pettus的文章包含了不少PostgreSQL数据库的信息。

TB 级别的海量图片存储在 Amazon S3 上,CDN 采用的也是 Amazon 的服务,CloudFront。

Instagram 也是 Redis 的重度用户,Feed 以及 Session 信息都用 Redis 处理,Redis 也是以 Master-Replica 方式部署。在 Replica 节点上进行数据备份。

使用了 Apache Solr 承担 Geo-searchAPI的工作,Solr 简单的 JSON 接口也不错。

缓存使用了 6 个 Memcached 实例,库使用 pylibmc 和 libmemcached。亚马逊也提供缓存服务-Elastic Cache service ,Instagram 也有尝试,不过不便宜。

任务队列/发布通知

队列服务使用Gearman,通知系统则使用pyapns来实现。

监控

前面提及的服务器实例数量加起来,的确有100多个,有效的监控是相当有必要的。使用 Munin 作为主要监控工具 , 也写了不少定制插件,外部监控用Pingdom的服务。通知服务使用PagerDuty。

对于 Python 的错误报告,使用 Disqus 团队开源的Sentry来处理。

几个感想

0)轻装上阵说起来容易,做起来非常难。这也是 Instagram 团队目前最令人着迷的地方;

1)Python 社区已经足够成熟,各个环节上都已经有不错的解决方案了。

2)如果要问我最大的一个感慨,我要说:Amazon 真是一家伟大的公司,甚至比 Google 还伟大。

转自草根网:原文地址: http://www.20ju.com/content/V189855.htm

相关实践学习
使用PolarDB和ECS搭建门户网站
本场景主要介绍如何基于PolarDB和ECS实现搭建门户网站。
阿里云数据库产品家族及特性
阿里云智能数据库产品团队一直致力于不断健全产品体系,提升产品性能,打磨产品功能,从而帮助客户实现更加极致的弹性能力、具备更强的扩展能力、并利用云设施进一步降低企业成本。以云原生+分布式为核心技术抓手,打造以自研的在线事务型(OLTP)数据库Polar DB和在线分析型(OLAP)数据库Analytic DB为代表的新一代企业级云原生数据库产品体系, 结合NoSQL数据库、数据库生态工具、云原生智能化数据库管控平台,为阿里巴巴经济体以及各个行业的企业客户和开发者提供从公共云到混合云再到私有云的完整解决方案,提供基于云基础设施进行数据从处理、到存储、再到计算与分析的一体化解决方案。本节课带你了解阿里云数据库产品家族及特性。
相关文章
|
5月前
|
人工智能 自然语言处理 数据可视化
两大 智能体框架 Dify vs Langchain 的全面分析,该怎么选?资深架构师 做一个彻底的解密
两大 智能体框架 Dify vs Langchain 的全面分析,该怎么选?资深架构师 做一个彻底的解密
两大 智能体框架 Dify vs Langchain 的全面分析,该怎么选?资深架构师 做一个彻底的解密
|
6月前
|
网络协议 Java 应用服务中间件
框架源码私享笔记(01)Tomcat核心架构功能 | 配置详解
本文首先分享了《活出意义来》一书序言中的感悟,强调成功如同幸福,不是刻意追求就能得到,而是全心投入时的副产品。接着探讨了Tomcat的核心功能与架构解析,包括网络连接器(Connector)和Servlet容器(Container),并介绍了其处理HTTP请求的工作流程。文章还详细解释了Tomcat的server.xml配置文件,涵盖了从顶级容器Server到子组件Connector、Engine、Host、Context等的配置参数及作用,帮助读者理解Tomcat的内部机制和配置方法。
|
4月前
|
机器学习/深度学习 人工智能 算法
大型多模态推理模型技术演进综述:从模块化架构到原生推理能力的综合分析
该研究系统梳理了大型多模态推理模型(LMRMs)的技术发展,从早期模块化架构到统一的语言中心框架,提出原生LMRMs(N-LMRMs)的前沿概念。论文划分三个技术演进阶段及一个前瞻性范式,深入探讨关键挑战与评估基准,为构建复杂动态环境中的稳健AI系统提供理论框架。未来方向聚焦全模态泛化、深度推理与智能体行为,推动跨模态融合与自主交互能力的发展。
260 13
大型多模态推理模型技术演进综述:从模块化架构到原生推理能力的综合分析
|
8月前
|
机器学习/深度学习 安全 算法
十大主流联邦学习框架:技术特性、架构分析与对比研究
联邦学习(FL)是保障数据隐私的分布式模型训练关键技术。业界开发了多种开源和商业框架,如TensorFlow Federated、PySyft、NVFlare、FATE、Flower等,支持模型训练、数据安全、通信协议等功能。这些框架在灵活性、易用性、安全性和扩展性方面各有特色,适用于不同应用场景。选择合适的框架需综合考虑开源与商业、数据分区支持、安全性、易用性和技术生态集成等因素。联邦学习已在医疗、金融等领域广泛应用,选择适配具体需求的框架对实现最优模型性能至关重要。
1549 79
十大主流联邦学习框架:技术特性、架构分析与对比研究
|
10月前
|
前端开发 测试技术 数据处理
Kotlin教程笔记 - MVP与MVVM架构设计的对比
Kotlin教程笔记 - MVP与MVVM架构设计的对比
302 4
|
10月前
|
前端开发 JavaScript 测试技术
Kotlin教程笔记 - 适合构建中大型项目的架构模式全面对比
Kotlin教程笔记 - 适合构建中大型项目的架构模式全面对比
132 3
|
10月前
|
存储 前端开发 Java
Kotlin教程笔记 - MVVM架构怎样避免内存泄漏
Kotlin教程笔记 - MVVM架构怎样避免内存泄漏
129 2
|
3月前
|
运维 监控 数据可视化
一文详解:工业软件“低代码开发平台”技术架构研究与分析
本文围绕工业软件低代码开发平台的机遇与挑战,提出基于自动化引擎的技术架构,由工具链、引擎库、模型库、组件库、工业数据网关和应用门户组成。文章分析了其在快速开发、传统系统升级中的应用模式及价值,如缩短创新周期、降低试错成本、解决资源缺乏和提升创新可复制性,为我国工业软件产业发展提供参考和支持。
|
3月前
|
负载均衡 Java API
基于 Spring Cloud 的微服务架构分析
Spring Cloud 是一个基于 Spring Boot 的微服务框架,提供全套分布式系统解决方案。它整合了 Netflix、Zookeeper 等成熟技术,通过简化配置和开发流程,支持服务发现(Eureka)、负载均衡(Ribbon)、断路器(Hystrix)、API网关(Zuul)、配置管理(Config)等功能。此外,Spring Cloud 还兼容 Nacos、Consul、Etcd 等注册中心,满足不同场景需求。其核心组件如 Feign 和 Stream,进一步增强了服务调用与消息处理能力,为开发者提供了一站式微服务开发工具包。
469 0
|
7月前
|
SQL 运维 BI
湖仓分析|浙江霖梓基于 Doris + Paimon 打造实时/离线一体化湖仓架构
浙江霖梓早期基于 Apache Doris 进行整体架构与表结构的重构,并基于湖仓一体和查询加速展开深度探索与实践,打造了 Doris + Paimon 的实时/离线一体化湖仓架构,实现查询提速 30 倍、资源成本节省 67% 等显著成效。
338 3
湖仓分析|浙江霖梓基于 Doris + Paimon 打造实时/离线一体化湖仓架构

热门文章

最新文章