几道高级前端面试题解析

本文涉及的产品
公共DNS(含HTTPDNS解析),每月1000万次HTTP解析
全局流量管理 GTM,标准版 1个月
云解析 DNS,旗舰版 1个月
简介:

目前自己组建的一个团队正在写一份面试图谱,将会在七月中旬开源。内容十分丰富,第一版会开源前端方面知识和程序员必备知识,后期会逐步写入后端方面知识。因为工程所涉及内容太多(目前已经写了一个半月),并且还需翻译成英文,所以所需时间较长。本篇的一些知识点也取自面试图谱,比如第一题和最后题。有兴趣的同学可以 Follow 我的 Github 得到最快的更新消息。

为什么 0.1 + 0.2 != 0.3,请详述理由

因为 JS 采用 IEEE 754 双精度版本(64位),并且只要采用 IEEE 754 的语言都有该问题。

我们都知道计算机表示十进制是采用二进制表示的,所以 0.1 在二进制表示为



// (0011) 表示循环
0.1 = 2^-4 * 1.10011(0011)

那么如何得到这个二进制的呢,我们可以来演算下


a0c8e2c55f97e0aff0aad4c332df341f89feae9c

小数算二进制和整数不同。乘法计算时,只计算小数位,整数位用作每一位的二进制,并且得到的第一位为最高位。所以我们得出 0.1 = 2^-4 * 1.10011(0011),那么 0.2 的演算也基本如上所示,只需要去掉第一步乘法,所以得出 0.2 = 2^-3 * 1.10011(0011)

回来继续说 IEEE 754 双精度。六十四位中符号位占一位,整数位占十一位,其余五十二位都为小数位。因为 0.10.2 都是无限循环的二进制了,所以在小数位末尾处需要判断是否进位(就和十进制的四舍五入一样)。

所以 2^-4 * 1.10011...001 进位后就变成了 2^-4 * 1.10011(0011 * 12次)010 。那么把这两个二进制加起来会得出 2^-2 * 1.0011(0011 * 11次)0100 , 这个值算成十进制就是 0.30000000000000004

下面说一下原生解决办法,如下代码所示



parseFloat((0.1 + 0.2).toFixed(10))

10 个 Ajax 同时发起请求,全部返回展示结果,并且至多允许三次失败,说出设计思路

这个问题相信很多人会第一时间想到 Promise.all ,但是这个函数有一个局限在于如果失败一次就返回了,直接这样实现会有点问题,需要变通下。以下是两种实现思路


// 以下是不完整代码,着重于思路 非 Promise 写法
let successCount = 0
let errorCount = 0
let datas = []
ajax(url, (res) => {
     if (success) {
         success++
         if (success + errorCount === 10) {
             console.log(datas)
         } else {
             datas.push(res.data)
         }
     } else {
         errorCount++
         if (errorCount > 3) {
            // 失败次数大于3次就应该报错了
             throw Error('失败三次')
         }
     }
})
// Promise 写法
let errorCount = 0
let p = new Promise((resolve, reject) => {
    if (success) {
         resolve(res.data)
     } else {
         errorCount++
         if (errorCount > 3) {
            // 失败次数大于3次就应该报错了
            reject(error)
         } else {
             resolve(error)
         }
     }
})
Promise.all([p]).then(v => {
  console.log(v);
});

基于 Localstorage 设计一个 1M 的缓存系统,需要实现缓存淘汰机制

设计思路如下:

  • 存储的每个对象需要添加两个属性:分别是过期时间和存储时间。
  • 利用一个属性保存系统中目前所占空间大小,每次存储都增加该属性。当该属性值大于 1M 时,需要按照时间排序系统中的数据,删除一定量的数据保证能够存储下目前需要存储的数据。
  • 每次取数据时,需要判断该缓存数据是否过期,如果过期就删除。

以下是代码实现,实现了思路,但是可能会存在 Bug,但是这种设计题一般是给出设计思路和部分代码,不会需要写出一个无问题的代码



class Store {
  constructor() {
    let store = localStorage.getItem('cache')
    if (!store) {
      store = {
        maxSize: 1024 * 1024,
        size: 0
      }
      this.store = store
    } else {
      this.store = JSON.parse(store)
    }
  }
  set(key, value, expire) {
    this.store[key] = {
      date: Date.now(),
      expire,
      value
    }
    let size = this.sizeOf(JSON.stringify(this.store[key]))
    if (this.store.maxSize < size + this.store.size) {
      console.log('超了-----------');
      var keys = Object.keys(this.store);
      // 时间排序
      keys = keys.sort((a, b) => {
        let item1 = this.store[a], item2 = this.store[b];
        return item2.date - item1.date;
      });
      while (size + this.store.size > this.store.maxSize) {
        let index = keys[keys.length - 1]
        this.store.size -= this.sizeOf(JSON.stringify(this.store[index]))
        delete this.store[index]
      }
    }
    this.store.size += size

    localStorage.setItem('cache', JSON.stringify(this.store))
  }
  get(key) {
    let d = this.store[key]
    if (!d) {
      console.log('找不到该属性');
      return
    }
    if (d.expire > Date.now) {
      console.log('过期删除');
      delete this.store[key]
      localStorage.setItem('cache', JSON.stringify(this.store))
    } else {
      return d.value
    }
  }
  sizeOf(str, charset) {
    var total = 0,
      charCode,
      i,
      len;
    charset = charset ? charset.toLowerCase() : '';
    if (charset === 'utf-16' || charset === 'utf16') {
      for (i = 0, len = str.length; i < len; i++) {
        charCode = str.charCodeAt(i);
        if (charCode <= 0xffff) {
          total += 2;
        } else {
          total += 4;
        }
      }
    } else {
      for (i = 0, len = str.length; i < len; i++) {
        charCode = str.charCodeAt(i);
        if (charCode <= 0x007f) {
          total += 1;
        } else if (charCode <= 0x07ff) {
          total += 2;
        } else if (charCode <= 0xffff) {
          total += 3;
        } else {
          total += 4;
        }
      }
    }
    return total;
  }
}

详细说明 Event loop

众所周知 JS 是门非阻塞单线程语言,因为在最初 JS 就是为了和浏览器交互而诞生的。如果 JS 是门多线程的语言话,我们在多个线程中处理 DOM 就可能会发生问题(一个线程中新加节点,另一个线程中删除节点),当然可以引入读写锁解决这个问题。

JS 在执行的过程中会产生执行环境,这些执行环境会被顺序的加入到执行栈中。如果遇到异步的代码,会被挂起并加入到 Task(有多种 task) 队列中。一旦执行栈为空,Event Loop 就会从 Task 队列中拿出需要执行的代码并放入执行栈中执行,所以本质上来说 JS 中的异步还是同步行为。



console.log('script start');

setTimeout(function() {
  console.log('setTimeout');
}, 0);

console.log('script end');

以上代码虽然 setTimeout 延时为 0,其实还是异步。这是因为 HTML5 标准规定这个函数第二个参数不得小于 4 毫秒,不足会自动增加。所以 setTimeout 还是会在 script end 之后打印。

不同的任务源会被分配到不同的 Task 队列中,任务源可以分为 微任务(microtask) 和 宏任务(macrotask)。在 ES6 规范中,microtask 称为 jobs,macrotask 称为 task


console.log('script start');

setTimeout(function() {
  console.log('setTimeout');
}, 0);

new Promise((resolve) => {
    console.log('Promise')
    resolve()
}).then(function() {
  console.log('promise1');
}).then(function() {
  console.log('promise2');
});

console.log('script end');
// script start => Promise => script end => promise1 => promise2 => setTimeout

以上代码虽然 setTimeout 写在 Promise 之前,但是因为 Promise 属于微任务而 setTimeout 属于宏任务,所以会有以上的打印。

微任务包括 process.nextTickpromiseObject.observeMutationObserver

宏任务包括 scriptsetTimeoutsetIntervalsetImmediateI/OUI rendering

很多人有个误区,认为微任务快于宏任务,其实是错误的。因为宏任务中包括了 script ,浏览器会先执行一个宏任务,接下来有异步代码的话就先执行微任务。

所以正确的一次 Event loop 顺序是这样的

  1. 执行同步代码,这属于宏任务
  2. 执行栈为空,查询是否有微任务需要执行
  3. 执行所有微任务
  4. 必要的话渲染 UI
  5. 然后开始下一轮 Event loop,执行宏任务中的异步代码

通过上述的 Event loop 顺序可知,如果宏任务中的异步代码有大量的计算并且需要操作 DOM 的话,为了更快的 界面响应,我们可以把操作 DOM 放入微任务中。

Node 中的 Event loop

Node 中的 Event loop 和浏览器中的不相同。

Node 的 Event loop 分为6个阶段,它们会按照顺序反复运行



┌───────────────────────┐
┌─>│        timers         │
│  └──────────┬────────────┘
│  ┌──────────┴────────────┐
│  │     I/O callbacks     │
│  └──────────┬────────────┘
│  ┌──────────┴────────────┐
│  │     idle, prepare     │
│  └──────────┬────────────┘      ┌───────────────┐
│  ┌──────────┴────────────┐      │   incoming:   │
│  │         poll          │<──connections───     │
│  └──────────┬────────────┘      │   data, etc.  │
│  ┌──────────┴────────────┐      └───────────────┘
│  │        check          │
│  └──────────┬────────────┘
│  ┌──────────┴────────────┐
└──┤    close callbacks    │
   └───────────────────────┘

timer

timers 阶段会执行 setTimeoutsetInterval

一个 timer 指定的时间并不是准确时间,而是在达到这个时间后尽快执行回调,可能会因为系统正在执行别的事务而延迟。

下限的时间有一个范围:[1, 2147483647] ,如果设定的时间不在这个范围,将被设置为1。

I/O

I/O 阶段会执行除了 close 事件,定时器和 setImmediate 的回调

idle, prepare

idle, prepare 阶段内部实现

poll

poll 阶段很重要,这一阶段中,系统会做两件事情

  1. 执行到点的定时器
  2. 执行 poll 队列中的事件

并且当 poll 中没有定时器的情况下,会发现以下两件事情

  • 如果 poll 队列不为空,会遍历回调队列并同步执行,直到队列为空或者系统限制
  • 如果 poll 队列为空,会有两件事发生
    • 如果有 setImmediate 需要执行,poll 阶段会停止并且进入到 check 阶段执行 setImmediate
    • 如果没有 setImmediate 需要执行,会等待回调被加入到队列中并立即执行回调

如果有别的定时器需要被执行,会回到 timer 阶段执行回调。

check

check 阶段执行 setImmediate

close callbacks

close callbacks 阶段执行 close 事件

并且在 Node 中,有些情况下的定时器执行顺序是随机的


setTimeout(() => {
    console.log('setTimeout');
}, 0);
setImmediate(() => {
    console.log('setImmediate');
})
// 这里可能会输出 setTimeout,setImmediate
// 可能也会相反的输出,这取决于性能
// 因为可能进入 event loop 用了不到 1 毫秒,这时候会执行 setImmediate
// 否则会执行 setTimeout

当然在这种情况下,执行顺序是相同的

var fs = require('fs')

fs.readFile(__filename, () => {
    setTimeout(() => {
        console.log('timeout');
    }, 0);
    setImmediate(() => {
        console.log('immediate');
    });
});
// 因为 readFile 的回调在 poll 中执行
// 发现有 setImmediate ,所以会立即跳到 check 阶段执行回调
// 再去 timer 阶段执行 setTimeout
// 所以以上输出一定是 setImmediate,setTimeout


上面介绍的都是 macrotask 的执行情况,microtask 会在以上每个阶段完成后立即执行。


setTimeout(()=>{
    console.log('timer1')

    Promise.resolve().then(function() {
        console.log('promise1')
    })
}, 0)

setTimeout(()=>{
    console.log('timer2')

    Promise.resolve().then(function() {
        console.log('promise2')
    })
}, 0)

// 以上代码在浏览器和 node 中打印情况是不同的
// 浏览器中打印 timer1, promise1, timer2, promise2
// node 中打印 timer1, timer2, promise1, promise2

Node 中的  process.nextTick 会先于其他 microtask 执行。


setTimeout(() => {
  console.log("timer1");

  Promise.resolve().then(function() {
    console.log("promise1");
  });
}, 0);

process.nextTick(() => {
  console.log("nextTick");
});
// nextTick, timer1, promise1


原文发布时间为:2018年04月26日
原文作者:夕阳
本文来源:  掘金  如需转载请联系原作者




相关文章
|
2月前
|
监控 Java 应用服务中间件
高级java面试---spring.factories文件的解析源码API机制
【11月更文挑战第20天】Spring Boot是一个用于快速构建基于Spring框架的应用程序的开源框架。它通过自动配置、起步依赖和内嵌服务器等特性,极大地简化了Spring应用的开发和部署过程。本文将深入探讨Spring Boot的背景历史、业务场景、功能点以及底层原理,并通过Java代码手写模拟Spring Boot的启动过程,特别是spring.factories文件的解析源码API机制。
92 2
|
1月前
|
Java 程序员
面试官的加分题:super关键字全解析,轻松应对!
小米,29岁程序员,通过一个关于Animal和Dog类的故事,详细解析了Java中super关键字的多种用法,包括调用父类构造方法、访问父类成员变量及调用父类方法,帮助读者更好地理解和应用super,应对面试挑战。
41 3
|
2月前
|
存储 网络协议 安全
30 道初级网络工程师面试题,涵盖 OSI 模型、TCP/IP 协议栈、IP 地址、子网掩码、VLAN、STP、DHCP、DNS、防火墙、NAT、VPN 等基础知识和技术,帮助小白们充分准备面试,顺利踏入职场
本文精选了 30 道初级网络工程师面试题,涵盖 OSI 模型、TCP/IP 协议栈、IP 地址、子网掩码、VLAN、STP、DHCP、DNS、防火墙、NAT、VPN 等基础知识和技术,帮助小白们充分准备面试,顺利踏入职场。
109 2
|
2月前
|
机器学习/深度学习 编解码 前端开发
探索无界:前端开发中的响应式设计深度解析####
【10月更文挑战第29天】 在当今数字化时代,用户体验的优化已成为网站与应用成功的关键。本文旨在深入探讨响应式设计的核心理念、技术实现及最佳实践,揭示其如何颠覆传统布局限制,实现跨设备无缝对接,从而提升用户满意度和访问量。通过剖析响应式设计的精髓,我们将一同见证其在现代Web开发中的重要地位与未来趋势。 ####
48 7
|
2月前
|
编解码 前端开发 UED
探索无界:前端开发中的响应式设计深度解析与实践####
【10月更文挑战第29天】 本文深入探讨了响应式设计的核心理念,即通过灵活的布局、媒体查询及弹性图片等技术手段,使网站能够在不同设备上提供一致且优质的用户体验。不同于传统摘要概述,本文将以一次具体项目实践为引,逐步剖析响应式设计的关键技术点,分享实战经验与避坑指南,旨在为前端开发者提供一套实用的响应式设计方法论。 ####
70 4
|
2月前
|
存储 NoSQL MongoDB
MongoDB面试专题33道解析
大家好,我是 V 哥。今天为大家整理了 MongoDB 面试题,涵盖 NoSQL 数据库基础、MongoDB 的核心概念、集群与分片、备份恢复、性能优化等内容。这些题目和解答不仅适合面试准备,也是日常工作中深入理解 MongoDB 的宝贵资料。希望对大家有所帮助!
|
2月前
|
缓存 前端开发 JavaScript
"面试通关秘籍:深度解析浏览器面试必考问题,从重绘回流到事件委托,让你一举拿下前端 Offer!"
【10月更文挑战第23天】在前端开发面试中,浏览器相关知识是必考内容。本文总结了四个常见问题:浏览器渲染机制、重绘与回流、性能优化及事件委托。通过具体示例和对比分析,帮助求职者更好地理解和准备面试。掌握这些知识点,有助于提升面试表现和实际工作能力。
70 1
|
3月前
|
缓存 Java 程序员
Map - LinkedHashSet&Map源码解析
Map - LinkedHashSet&Map源码解析
89 0
|
14天前
|
存储 设计模式 算法
【23种设计模式·全精解析 | 行为型模式篇】11种行为型模式的结构概述、案例实现、优缺点、扩展对比、使用场景、源码解析
行为型模式用于描述程序在运行时复杂的流程控制,即描述多个类或对象之间怎样相互协作共同完成单个对象都无法单独完成的任务,它涉及算法与对象间职责的分配。行为型模式分为类行为模式和对象行为模式,前者采用继承机制来在类间分派行为,后者采用组合或聚合在对象间分配行为。由于组合关系或聚合关系比继承关系耦合度低,满足“合成复用原则”,所以对象行为模式比类行为模式具有更大的灵活性。 行为型模式分为: • 模板方法模式 • 策略模式 • 命令模式 • 职责链模式 • 状态模式 • 观察者模式 • 中介者模式 • 迭代器模式 • 访问者模式 • 备忘录模式 • 解释器模式
【23种设计模式·全精解析 | 行为型模式篇】11种行为型模式的结构概述、案例实现、优缺点、扩展对比、使用场景、源码解析
|
14天前
|
设计模式 存储 安全
【23种设计模式·全精解析 | 创建型模式篇】5种创建型模式的结构概述、实现、优缺点、扩展、使用场景、源码解析
结构型模式描述如何将类或对象按某种布局组成更大的结构。它分为类结构型模式和对象结构型模式,前者采用继承机制来组织接口和类,后者釆用组合或聚合来组合对象。由于组合关系或聚合关系比继承关系耦合度低,满足“合成复用原则”,所以对象结构型模式比类结构型模式具有更大的灵活性。 结构型模式分为以下 7 种: • 代理模式 • 适配器模式 • 装饰者模式 • 桥接模式 • 外观模式 • 组合模式 • 享元模式
【23种设计模式·全精解析 | 创建型模式篇】5种创建型模式的结构概述、实现、优缺点、扩展、使用场景、源码解析

推荐镜像

更多