python中上双互斥锁的线程执行流程

简介: import threadingdef sing(): print('进入sing -----------------') for i in range(3): print('进入sing循环 -----------------') l1.acquire() print('sing上锁 -----------------') print('唱歌。
import threading

def sing():
    print('进入sing -----------------')
    for i in range(3):
        print('进入sing循环 -----------------')
        l1.acquire()
        print('sing上锁 -----------------')
        print('唱歌。。。')
        try:
            print('dance解锁 -----------------')
            l2.release()
            print('dance解锁成功 -----------------')
        except Exception:
            print('sing中dance解锁失败,重新开始循环----------------')
            pass

def dance():
    print('进入dance -----------------')
    for i in range(3):
        print('进入dance循环 -----------------')
        l2.acquire()
        print('dance上锁 -----------------')
        print('跳舞。。。')
        try:
            print('sing解锁 -----------------')
            l1.release()
            print('sing解锁成功 -----------------')
        except Exception:
            print('dance中sing解锁失败,重新开始循环----------------')
            pass

if __name__ == '__main__':
    # sing()
    # dance()
    l1 = threading.Lock()
    print(l1)
    l2 = threading.Lock()
    print(l2)
    t1 = threading.Thread(target=sing)
    t2 = threading.Thread(target=dance)
    print('线程创建完毕--------')
    t1.start()
    print('线程1开始执行------')
    t2.start()
    print('线程2开始执行------')
    t1.join()
    print('线程1守护主线程-----')
    t2.join()
    print('线程2守护主线程-----')

  

  

  这里我们暂且先不提全局解释器锁,从这个代码例子里我们可以看出,一个锁在上锁以后,如果在没有释放它的情况下再要对它上锁,他就会阻塞住,一直到它的锁被释放了以后才能够再次被上锁,这样就实现了两个线程的交替执行。

 

                                                                   -------  知识无价,汗水有情,如需搬运请注明出处,谢谢!

目录
相关文章
|
2月前
|
安全 数据处理 开发者
Python中的多线程编程:从入门到精通
本文将深入探讨Python中的多线程编程,包括其基本原理、应用场景、实现方法以及常见问题和解决方案。通过本文的学习,读者将对Python多线程编程有一个全面的认识,能够在实际项目中灵活运用。
|
22天前
|
并行计算 数据处理 调度
Python中的并发编程:探索多线程与多进程的奥秘####
本文深入探讨了Python中并发编程的两种主要方式——多线程与多进程,通过对比分析它们的工作原理、适用场景及性能差异,揭示了在不同应用需求下如何合理选择并发模型。文章首先简述了并发编程的基本概念,随后详细阐述了Python中多线程与多进程的实现机制,包括GIL(全局解释器锁)对多线程的影响以及多进程的独立内存空间特性。最后,通过实例演示了如何在Python项目中有效利用多线程和多进程提升程序性能。 ####
|
1月前
|
Java Unix 调度
python多线程!
本文介绍了线程的基本概念、多线程技术、线程的创建与管理、线程间的通信与同步机制,以及线程池和队列模块的使用。文章详细讲解了如何使用 `_thread` 和 `threading` 模块创建和管理线程,介绍了线程锁 `Lock` 的作用和使用方法,解决了多线程环境下的数据共享问题。此外,还介绍了 `Timer` 定时器和 `ThreadPoolExecutor` 线程池的使用,最后通过一个具体的案例展示了如何使用多线程爬取电影票房数据。文章还对比了进程和线程的优缺点,并讨论了计算密集型和IO密集型任务的适用场景。
55 4
|
17天前
|
数据采集 Java Python
爬取小说资源的Python实践:从单线程到多线程的效率飞跃
本文介绍了一种使用Python从笔趣阁网站爬取小说内容的方法,并通过引入多线程技术大幅提高了下载效率。文章首先概述了环境准备,包括所需安装的库,然后详细描述了爬虫程序的设计与实现过程,包括发送HTTP请求、解析HTML文档、提取章节链接及多线程下载等步骤。最后,强调了性能优化的重要性,并提醒读者遵守相关法律法规。
52 0
|
2月前
|
Python
Python中的多线程与多进程
本文将探讨Python中多线程和多进程的基本概念、使用场景以及实现方式。通过对比分析,我们将了解何时使用多线程或多进程更为合适,并提供一些实用的代码示例来帮助读者更好地理解这两种并发编程技术。
|
2月前
|
Java Python
python知识点100篇系列(16)-python中如何获取线程的返回值
【10月更文挑战第3天】本文介绍了两种在Python中实现多线程并获取返回值的方法。第一种是通过自定义线程类继承`Thread`类,重写`run`和`join`方法来实现;第二种则是利用`concurrent.futures`库,通过`ThreadPoolExecutor`管理线程池,简化了线程管理和结果获取的过程,推荐使用。示例代码展示了这两种方法的具体实现方式。
python知识点100篇系列(16)-python中如何获取线程的返回值
|
2月前
|
Java 应用服务中间件 测试技术
Java21虚拟线程:我的锁去哪儿了?
【10月更文挑战第8天】
41 0
|
2月前
|
网络协议 安全 Java
难懂,误点!将多线程技术应用于Python的异步事件循环
难懂,误点!将多线程技术应用于Python的异步事件循环
69 0
|
14天前
|
存储 数据挖掘 开发者
Python编程入门:从零到英雄
在这篇文章中,我们将一起踏上Python编程的奇幻之旅。无论你是编程新手,还是希望拓展技能的开发者,本教程都将为你提供一条清晰的道路,引导你从基础语法走向实际应用。通过精心设计的代码示例和练习,你将学会如何用Python解决实际问题,并准备好迎接更复杂的编程挑战。让我们一起探索这个强大的语言,开启你的编程生涯吧!
|
20天前
|
机器学习/深度学习 人工智能 TensorFlow
人工智能浪潮下的自我修养:从Python编程入门到深度学习实践
【10月更文挑战第39天】本文旨在为初学者提供一条清晰的道路,从Python基础语法的掌握到深度学习领域的探索。我们将通过简明扼要的语言和实际代码示例,引导读者逐步构建起对人工智能技术的理解和应用能力。文章不仅涵盖Python编程的基础,还将深入探讨深度学习的核心概念、工具和实战技巧,帮助读者在AI的浪潮中找到自己的位置。