(转)为什么选择机器学习策略

简介: 转自 吴恩达deeplearningai   机器学习(machine learning)是无数重要应用的基础,其包含网络搜索、垃圾邮件检测、语音识别以及产品推荐等内容。假如你和你的团队正在研发一项机器学习应用,并且想要取得较为快速的进展,本书的一些内容将会有所帮助。

转自 吴恩达deeplearningai

 

机器学习(machine learning)是无数重要应用的基础,其包含网络搜索、垃圾邮件检测、语音识别以及产品推荐等内容。假如你和你的团队正在研发一项机器学习应用,并且想要取得较为快速的进展,本书的一些内容将会有所帮助。

假设你正在建立一家初创公司,该公司将为猫咪爱好者们提供不计其数的猫咪图片。与此同时,你决定使用神经网络(neural network)技术来构建一套计算机视觉系统,用来识别图片中的猫。

你的团队有许多的改进方案,例如:

  • 获取更多的数据,即收集更多猫的图片

  • 收集更加多样化的训练数据集,比如处于不常见位置的猫的图片,颜色奇异的猫的图片,以及使用不同相机参数拍摄的猫的图片

  • 通过增加梯度下降(gradient descent)的迭代次数,使算法训练得久一些

  • 尝试一个拥有更多层(layer)/更多隐藏元(hidden units)/更多参数(parameters)的,规模更大的神经网络

  • 尝试加入正则化(例如 L2 正则化)

  • 改变神经网络的架构(激活函数,隐藏元数量等等)

  • ...

 

如果你能够在以上可能的方向中做出正确的选择,那么你将建立起一个领先的猫咪图片识别平台,并带领你的公司获得成功。但如果你选择了一个糟糕的方向,则可能因此浪费掉几个月甚至数年的开发时间。

监督学习(supervised learning)是指使用已标记(labeled)的训练样本  来学习一个从  映射到  的函数。监督学习算法主要包括线性回归(linear regression)、对数几率回归(logistic regression,又译作逻辑回归)和神经网络(neural network)。虽然机器学习的形式有许多种,但当前具备实用价值的大部分机器学习算法都来自于监督学习。

我将经常提及神经网络(和“深度学习”中所提到的一致),但你只需对此有基础的了解就可以阅读后面的内容。

 

如果对上文提到的一些概念你还不是很熟悉,可以在 Coursera 观看《机器学习》前三周的课程内容。(课程地址:http://ml-class.org

不少关于深度学习(神经网络)的想法已经存在了数十年,而这些想法为什么现在才流行起来了呢?

有两个主要因素推动着近期的发展:

  • 数据可用性(data availability):如今人们在数字设备(笔记本电脑、移动设备等)上花费的时间越来越多,数字化行为与活动产生了海量的数据,而这些数据都可以提供给我们的学习算法用来训练。

  • 计算规模(computational scale):在近些年前,我们才开始能够使用现有的海量数据集来训练规模足够大的神经网络。

 

具体而言,即使你积累了更多的数据,但应用在类似于对数几率回归(logistic regression)这样的旧学习算法上,其性能表现(performance)也将趋于”平稳“。这意味着算法的学习曲线将”变得平缓“,即使提供更多的数据,算法的性能也将停止提升。

旧的学习算法似乎并不知道要如何来处理如今这个规模量级的数据。

 

如果你在相同的监督学习任务上选择训练出一个小型的神经网络(neutral network, NN),则可能会获得较好的性能表现.

因此,为了获得最佳的性能表现,你可以这样做:

(i) 训练大型的神经网络,效果如同上图的绿色曲线;

(ii) 拥有海量的数据。

在算法训练时,许多其它的细节也同等重要,例如神经网络的架构。但目前来说,提升算法性能的更加可靠的方法仍然是训练更大的网络以及获取更多的数据。

 

完成 (i) 和 (ii) 的过程异常复杂,本书将对其中的细节作进一步的讨论。我们将从传统学习算法与神经网络中都起作用的通用策略入手,循序渐进地讲解至最前沿的构建深度学习系统的策略。

目录
相关文章
|
1月前
|
机器学习/深度学习 数据采集 监控
构建高效机器学习模型的五大策略
【2月更文挑战第20天】 在数据科学领域,构建一个高效的机器学习模型是每个从业者追求的目标。本文将分享五种提升机器学习模型效能的策略,包括数据预处理的重要性、特征选择的艺术、模型选型与调优的智慧、集成学习的应用以及持续监控的必要性。这些策略不仅基于理论分析,而且通过实例展示其在实际问题中的应用,旨在为读者提供一套系统的方法论,以指导他们在构建模型时做出更明智的决策。
23 1
|
1月前
|
机器学习/深度学习 数据采集 监控
构建高效机器学习模型的策略与实践
【2月更文挑战第23天】 在数据科学领域,构建一个高效的机器学习模型是至关重要的。本文旨在探讨并提出一系列策略和最佳实践,以指导读者如何从数据处理到模型部署的各个阶段优化其机器学习项目。我们将重点讨论特征工程、算法选择、超参数调整以及模型评估等关键环节,并通过案例分析展示如何应对常见的挑战和误区。文章的目的是为从业者提供实用的指南,帮助他们构建出既准确又高效的机器学习系统。
|
2天前
|
机器学习/深度学习 数据挖掘 数据中心
利用机器学习优化数据中心能效的策略研究
【4月更文挑战第24天】在数据中心管理和运营中,能效优化是一个长期存在的挑战,它直接关系到成本控制和环境影响的减轻。随着人工智能技术的不断进步,特别是机器学习(ML)方法的广泛应用,为解决数据中心能效问题提供了新的途径。本文旨在探讨如何通过机器学习技术对数据中心的能源消耗进行建模、预测和优化,以实现更高的能效。我们首先分析了数据中心能耗的主要组成部分,然后提出了一种基于机器学习的能效优化框架,并详细阐述了关键技术和方法。最后,通过实验验证了所提出策略的有效性,并讨论了未来的研究方向。
|
8天前
|
机器学习/深度学习 资源调度 调度
利用机器学习优化数据中心能效的策略研究
【4月更文挑战第18天】 在数据中心的运营成本中,能源消耗占据了显著比例。为了降低这一开销同时减少环境影响,本文提出一套基于机器学习技术的数据中心能效优化策略。通过分析数据中心的能耗模式和环境变量,构建了一个预测模型来动态调整资源分配,实现能源使用的最大效率。与传统方法相比,本研究提出的策略在保证服务质量的前提下,能有效降低能耗,并具备自我学习和适应的能力。
|
30天前
|
机器学习/深度学习 数据采集 算法
构建高效机器学习模型的策略与优化方法
在机器学习领域,构建一个既高效又准确的预测模型是每个数据科学家追求的目标。本文将探讨一系列策略和优化方法,用于提高机器学习模型的性能和效率。我们将从数据处理技巧、特征选择、算法调优以及模型评估等方面进行详细讨论。特别地,文章将重点介绍如何通过集成学习和自动化模型调优工具来提升模型的泛化能力。这些技术不仅能帮助减少过拟合的风险,还能确保模型在未知数据集上的表现更加鲁棒。
|
1月前
|
机器学习/深度学习 资源调度 算法
利用机器学习优化数据中心能效的策略
【2月更文挑战第31天】 在云计算和大数据的时代,数据中心作为核心基础设施,其能效管理已成为技术创新的前沿话题。本文旨在探讨通过机器学习技术优化数据中心能效的可能性与实践策略。通过对现有数据中心运行模式的分析,结合机器学习在能源消耗预测、资源调度和故障检测等方面的应用案例,我们展示了如何实现智能化的能源管理,以及这些技术如何帮助降低运营成本并减少环境影响。文中不仅详细阐述了机器学习模型的构建过程,还讨论了实施中的挑战及未来发展方向。
|
1月前
|
机器学习/深度学习 数据采集 人工智能
构建高效机器学习模型的策略与实践
【2月更文挑战第26天】 在当今数据驱动的时代,构建高效的机器学习模型已经成为了企业获取竞争优势的关键。本文将探讨一系列实用的策略和技术,旨在指导读者如何从数据准备到模型部署的全过程中优化其机器学习项目。我们将重点讨论特征工程的重要性、超参数调优的技巧、以及模型评估和验证的最佳实践。通过这些方法的应用,读者可以提升模型的性能,确保在现实世界的复杂问题中达到更高的准确率和泛化能力。
|
1月前
|
机器学习/深度学习 数据采集 监控
构建高效机器学习模型的五大策略
【2月更文挑战第26天】 在数据驱动的时代,机器学习模型已成为洞察复杂数据结构和预测未来趋势的关键工具。然而,模型的性能往往受限于数据质量、算法选择和参数调优等多种因素。本文将深入探讨提升机器学习模型效能的五个核心策略:高质量数据集的构建与预处理、算法选择与优化、超参数调整、模型集成以及持续监控与评估。这些策略不仅适用于初学者,也为经验丰富的数据科学家提供了进一步优化模型性能的思路。
|
1月前
|
机器学习/深度学习 数据采集 大数据
构建高效机器学习模型的策略与实践
【2月更文挑战第26天】 在数据驱动的时代,机器学习已成为解决复杂问题的重要工具。本文旨在探讨如何构建高效的机器学习模型,从数据预处理、特征选择、模型调优等方面进行详细阐述。我们将介绍一些实用的技巧和方法,帮助读者提高模型的性能和泛化能力。
|
1月前
|
机器学习/深度学习 算法 数据处理
构建高效机器学习模型的策略与实践
【2月更文挑战第25天】本文旨在探讨如何通过一系列策略性步骤来构建一个高效的机器学习模型。我们将从数据处理的重要性讲起,接着讨论特征选择的艺术以及模型训练的技巧。文章将提供实用的建议,并通过案例分析展示如何在实践中应用这些策略,以期帮助数据科学家和开发者提高他们的模型性能。