PostgreSQL 9.6 scale-up高并发增强 VS 9.5

本文涉及的产品
云数据库 RDS MySQL,集群系列 2核4GB
推荐场景:
搭建个人博客
云原生数据库 PolarDB 分布式版,标准版 2核8GB
云数据库 RDS SQL Server,基础系列 2核4GB
简介:

PostgreSQL 9.6 scale-up高并发增强 VS 9.5

作者

digoal

日期

2016-10-02

标签

PostgreSQL , 9.6 , scale-up , 高并发 , 多核增强


背景

PostgreSQL 在向和纵向的扩展能力在开源数据库中一直处于非常领先的地位,例如今年推出的9.6,内置了sharding的功能,同时在scale-up的能力也有非常明显的提升,特别是在多核与高并发处理这块。

社区有同学在128核的机器上测试tpc-b的select only模式可以达到几百万的qps。

除了读的高并发有明显的性能提升,在写这块,引入了动态扩展数据文件,从而对单个表的插入性能也有非常明显的提升,如果你的应用场景是日志型的,需要大批量的高并发入库,9.6就非常适合你。

LOCK改进,Partition the shared hash table freelist to reduce contention on multi-CPU-socket servers (Aleksander Alekseev)

本文将针对高并发的读,写,更新场景测试一下9.6和9.5的性能差异。

为了规避IO瓶颈的影响,体现9.6代码处理逻辑方面的改进,所有测试场景的数据均小于内存大小。

环境介绍

32核, 512G, SSD, XFS。

安装与配置

测试机器为同一主机。

1. OS配置

# yum -y install coreutils glib2 lrzsz sysstat e4fsprogs xfsprogs ntp readline-devel zlib zlib-devel openssl openssl-devel pam-devel libxml2-devel libxslt-devel python-devel tcl-devel gcc make smartmontools flex bison perl perl-devel perl-ExtUtils* openldap openldap-devel

# vi /etc/sysctl.conf
# add by digoal.zhou
fs.aio-max-nr = 1048576
fs.file-max = 76724600
kernel.core_pattern= /data01/corefiles/core_%e_%u_%t_%s.%p         
# /data01/corefiles事先建好,权限777
kernel.sem = 4096 2147483647 2147483646 512000    
# 信号量, ipcs -l 或 -u 查看,每16个进程一组,每组信号量需要17个信号量。
kernel.shmall = 107374182      
# 所有共享内存段相加大小限制(建议内存的80%)
kernel.shmmax = 274877906944   
# 最大单个共享内存段大小(建议为内存一半), >9.2的版本已大幅降低共享内存的使用
kernel.shmmni = 819200         
# 一共能生成多少共享内存段,每个PG数据库集群至少2个共享内存段
net.core.netdev_max_backlog = 10000
net.core.rmem_default = 262144       
# The default setting of the socket receive buffer in bytes.
net.core.rmem_max = 4194304          
# The maximum receive socket buffer size in bytes
net.core.wmem_default = 262144       
# The default setting (in bytes) of the socket send buffer.
net.core.wmem_max = 4194304          
# The maximum send socket buffer size in bytes.
net.core.somaxconn = 4096
net.ipv4.tcp_max_syn_backlog = 4096
net.ipv4.tcp_keepalive_intvl = 20
net.ipv4.tcp_keepalive_probes = 3
net.ipv4.tcp_keepalive_time = 60
net.ipv4.tcp_mem = 8388608 12582912 16777216
net.ipv4.tcp_fin_timeout = 5
net.ipv4.tcp_synack_retries = 2
net.ipv4.tcp_syncookies = 1    
# 开启SYN Cookies。当出现SYN等待队列溢出时,启用cookie来处理,可防范少量的SYN攻击
net.ipv4.tcp_timestamps = 1    
# 减少time_wait
net.ipv4.tcp_tw_recycle = 0    
# 如果=1则开启TCP连接中TIME-WAIT套接字的快速回收,但是NAT环境可能导致连接失败,建议服务端关闭它
net.ipv4.tcp_tw_reuse = 1      
# 开启重用。允许将TIME-WAIT套接字重新用于新的TCP连接
net.ipv4.tcp_max_tw_buckets = 262144
net.ipv4.tcp_rmem = 8192 87380 16777216
net.ipv4.tcp_wmem = 8192 65536 16777216
net.nf_conntrack_max = 1200000
net.netfilter.nf_conntrack_max = 1200000
vm.dirty_background_bytes = 409600000       
#  系统脏页到达这个值,系统后台刷脏页调度进程 pdflush(或其他) 自动将(dirty_expire_centisecs/100)秒前的脏页刷到磁盘
vm.dirty_expire_centisecs = 3000             
#  比这个值老的脏页,将被刷到磁盘。3000表示30秒。
vm.dirty_ratio = 95                          
#  如果系统进程刷脏页太慢,使得系统脏页超过内存 95 % 时,则用户进程如果有写磁盘的操作(如fsync, fdatasync等调用),则需要主动把系统脏页刷出。
#  有效防止用户进程刷脏页,在单机多实例,并且使用CGROUP限制单实例IOPS的情况下非常有效。  
vm.dirty_writeback_centisecs = 100            
#  pdflush(或其他)后台刷脏页进程的唤醒间隔, 100表示1秒。
vm.extra_free_kbytes = 4096000
vm.min_free_kbytes = 2097152
vm.mmap_min_addr = 65536
vm.overcommit_memory = 0     
#  在分配内存时,允许少量over malloc, 如果设置为 1, 则认为总是有足够的内存,内存较少的测试环境可以使用 1 .  
vm.overcommit_ratio = 90     
#  当overcommit_memory = 2 时,用于参与计算允许指派的内存大小。
vm.swappiness = 0            
#  关闭交换分区
vm.zone_reclaim_mode = 0     
# 禁用 numa, 或者在vmlinux中禁止. 
net.ipv4.ip_local_port_range = 40000 65535    
# 本地自动分配的TCP, UDP端口号范围
#  vm.nr_hugepages = 102352    
#  建议shared buffer设置超过64GB时 使用大页,页大小 /proc/meminfo Hugepagesize

# sysctl -p

# vi /etc/security/limits.conf
* soft    nofile  1024000
* hard    nofile  1024000
* soft    nproc   unlimited
* hard    nproc   unlimited
* soft    core    unlimited
* hard    core    unlimited
* soft    memlock unlimited
* hard    memlock unlimited

# rm -f /etc/security/limits.d/*

2. 数据库配置
安装

$ wget https://ftp.postgresql.org/pub/source/v9.6.0/postgresql-9.6.0.tar.bz2
$ wget https://ftp.postgresql.org/pub/source/v9.5.4/postgresql-9.5.4.tar.bz2

$ tar -jxvf postgresql-9.5.4.tar.bz2
$ tar -jxvf postgresql-9.6.0.tar.bz2

$ cd ~/postgresql-9.6.0
$ ./configure --prefix=/home/digoal/pgsql9.6.0
$ make world -j 32
$ make install-world -j 32

$ cd ~/postgresql-9.5.4
$ ./configure --prefix=/home/digoal/pgsql9.5
$ make world -j 32
$ make install-world -j 32

$ vi ~/envpg96.sh
export PS1="$USER@`/bin/hostname -s`-> "
export PGPORT=5281
export PGDATA=/data02/digoal/pg_root$PGPORT
export LANG=en_US.utf8
export PGHOME=/home/digoal/pgsql9.6.0
export LD_LIBRARY_PATH=$PGHOME/lib:/lib64:/usr/lib64:/usr/local/lib64:/lib:/usr/lib:/usr/local/lib:$LD_LIBRARY_PATH
export DATE=`date +"%Y%m%d%H%M"`
export PATH=$PGHOME/bin:$PATH:.
export MANPATH=$PGHOME/share/man:$MANPATH
export PGHOST=$PGDATA
export PGUSER=postgres
export PGDATABASE=postgres
alias rm='rm -i'
alias ll='ls -lh'
unalias vi

$ vi ~/envpg95.sh
export PS1="$USER@`/bin/hostname -s`-> "
export PGPORT=5288
export PGDATA=/data02/digoal/pg_root$PGPORT
export LANG=en_US.utf8
export PGHOME=/home/digoal/pgsql9.5
export LD_LIBRARY_PATH=$PGHOME/lib:/lib64:/usr/lib64:/usr/local/lib64:/lib:/usr/lib:/usr/local/lib:$LD_LIBRARY_PATH
export DATE=`date +"%Y%m%d%H%M"`
export PATH=$PGHOME/bin:$PATH:.
export MANPATH=$PGHOME/share/man:$MANPATH
export PGHOST=$PGDATA
export PGUSER=postgres
export PGDATABASE=postgres
alias rm='rm -i'
alias ll='ls -lh'
unalias vi

$ df -h
/dev/mapper/vgdata01-lv03
                      4.0T  1.3T  2.8T  32% /u01
/dev/mapper/vgdata01-lv04
                      7.7T  899G  6.8T  12% /u02

初始化集群

$ . ~/envpg96.sh
$ initdb -D $PGDATA -E UTF8 --locale=C -U postgres -X /data01/digoal/pg_xlog$PGPORT

$ . ~/envpg95.sh
$ initdb -D $PGDATA -E UTF8 --locale=C -U postgres -X /data01/digoal/pg_xlog$PGPORT

配置数据库参数

$ . ~/envpg96.sh
$ cd $PGDATA


$ vi postgresql.conf
listen_addresses = '0.0.0.0'
port = 5281
max_connections = 800
superuser_reserved_connections = 13
unix_socket_directories = '.'
unix_socket_permissions = 0700
tcp_keepalives_idle = 60
tcp_keepalives_interval = 10
tcp_keepalives_count = 10
shared_buffers = 128GB
huge_pages = try
maintenance_work_mem = 2GB
dynamic_shared_memory_type = sysv
vacuum_cost_delay = 0
bgwriter_delay = 10ms
bgwriter_lru_maxpages = 1000
bgwriter_lru_multiplier = 10.0
bgwriter_flush_after = 256
max_worker_processes = 128
max_parallel_workers_per_gather = 0
old_snapshot_threshold = -1
backend_flush_after = 0
synchronous_commit = off
full_page_writes = off
wal_buffers = 1981MB
wal_writer_delay = 10ms
wal_writer_flush_after = 4MB
checkpoint_timeout = 55min
max_wal_size = 256GB
checkpoint_flush_after = 1MB
random_page_cost = 1.0
effective_cache_size = 512GB
constraint_exclusion = on  
log_destination = 'csvlog'
logging_collector = on
log_checkpoints = on
log_connections = on
log_disconnections = on
log_error_verbosity = verbose  
log_timezone = 'PRC'
autovacuum = on
log_autovacuum_min_duration = 0
autovacuum_max_workers = 8
autovacuum_naptime = 10s
autovacuum_vacuum_scale_factor = 0.02
autovacuum_analyze_scale_factor = 0.01
statement_timeout = 0
lock_timeout = 0
idle_in_transaction_session_timeout = 0
gin_fuzzy_search_limit = 0
gin_pending_list_limit = 4MB
datestyle = 'iso, mdy'
timezone = 'PRC'
lc_messages = 'C'
lc_monetary = 'C'
lc_numeric = 'C'
lc_time = 'C'
default_text_search_config = 'pg_catalog.english'
deadlock_timeout = 1s


$ vi pg_hba.conf
local   all             all                                     trust
host    all             all             127.0.0.1/32            trust
host    all             all             ::1/128                 trust
host all all 0.0.0.0/0 md5


$ . ~/envpg95.sh
$ cd $PGDATA


$ vi postgresql.conf
listen_addresses = '0.0.0.0'
port = 5288
max_connections = 800
superuser_reserved_connections = 13
unix_socket_directories = '.'
unix_socket_permissions = 0700
tcp_keepalives_idle = 60
tcp_keepalives_interval = 10
tcp_keepalives_count = 10
shared_buffers = 128GB
huge_pages = try
maintenance_work_mem = 2GB
dynamic_shared_memory_type = posix
vacuum_cost_delay = 0
bgwriter_delay = 10ms
bgwriter_lru_maxpages = 1000
bgwriter_lru_multiplier = 10.0
max_worker_processes = 128
synchronous_commit = off
full_page_writes = off
wal_buffers = 1981MB
wal_writer_delay = 10ms
checkpoint_timeout = 55min
max_wal_size = 256GB
random_page_cost = 1.0
effective_cache_size = 512GB
constraint_exclusion = on  
log_destination = 'csvlog'
logging_collector = on
log_checkpoints = on
log_connections = on
log_disconnections = on
log_error_verbosity = verbose
log_timezone = 'PRC'
log_autovacuum_min_duration = 0
autovacuum_max_workers = 8
autovacuum_naptime = 10s
autovacuum_vacuum_scale_factor = 0.02
autovacuum_analyze_scale_factor = 0.01
statement_timeout = 0
lock_timeout = 0
gin_fuzzy_search_limit = 0
gin_pending_list_limit = 4MB
datestyle = 'iso, mdy'
timezone = 'PRC'
lc_messages = 'C'
lc_monetary = 'C'
lc_numeric = 'C'
lc_time = 'C'
default_text_search_config = 'pg_catalog.english'
deadlock_timeout = 1s


$ vi pg_hba.conf
local   all             all                                     trust
host    all             all             127.0.0.1/32            trust
host    all             all             ::1/128                 trust
host all all 0.0.0.0/0 md5

启动数据库

$ . ~/envpg96.sh
$ pg_ctl start

$ . ~/envpg95.sh
$ pg_ctl start

测试时只启动一个数据库,防止干扰。

一、select based on PK only

环境准备

单表1亿数据量,基于PK的查询。

考察高并发下的代码优化能力。

SQL如下

create table test(id int, info text, crt_time timestamp) with (autovacuum_freeze_max_age=1500000000, autovacuum_freeze_table_age=1400000000, autovacuum_multixact_freeze_max_age=1500000000, autovacuum_multixact_freeze_table_age=1400000000);
insert into test select generate_series(1,100000000),md5(random()::text),clock_timestamp();
set maintenance_work_mem='16GB';
alter table test add constraint test_pkey primary key (id);
vacuum analyze test;
select * from test limit 10;
 id |               info               |          crt_time          
----+----------------------------------+----------------------------
  1 | 652802c64d630dfbde4770ed0d2a649c | 2016-10-02 15:38:12.866501
  2 | c31d0e4ddd63618dbbb1c2a7932eae87 | 2016-10-02 15:38:12.866581
  3 | f1689301bf26efd4050a88d50713ac66 | 2016-10-02 15:38:12.866586
  4 | 155df78e2cd8f14291ddfd3f9179cde3 | 2016-10-02 15:38:12.866589
  5 | 12aa2596dadb2af637bee07f05e78feb | 2016-10-02 15:38:12.866592
  6 | 915f06af99501e629631b37f46f23816 | 2016-10-02 15:38:12.866595
  7 | be79647d50351435b903c03a377e0ff5 | 2016-10-02 15:38:12.866597
  8 | 676bedb18ffe2c7cc30a0d7ff081e7da | 2016-10-02 15:38:12.8666
  9 | e7111e4c9f910ac00312f7a67ddbd162 | 2016-10-02 15:38:12.866602
 10 | 22c6dd399e49663f3f14ce7634ff56d8 | 2016-10-02 15:38:12.866604
(10 rows)

9.5

$ vi test.sql
\setrandom id 1 100000000
select * from test where id=:id;

$ vi bench.sh
pgbench -M prepared -n -r -f ./test.sql -c 16 -j 16 -T 120
pgbench -M prepared -n -r -f ./test.sql -c 32 -j 32 -T 120
pgbench -M prepared -n -r -f ./test.sql -c 64 -j 64 -T 120
pgbench -M prepared -n -r -f ./test.sql -c 72 -j 72 -T 120
pgbench -M prepared -n -r -f ./test.sql -c 86 -j 86 -T 120
pgbench -M prepared -n -r -f ./test.sql -c 96 -j 96 -T 120
pgbench -M prepared -n -r -f ./test.sql -c 128 -j 128 -T 120
pgbench -M prepared -n -r -f ./test.sql -c 192 -j 192 -T 120
pgbench -M prepared -n -r -f ./test.sql -c 256 -j 256 -T 120

$ . ./bench.sh

测试结果

并发数 , TPS

16 , 261687
32 , 514649
64 , 964129
72 , 946146
86 , 923699
96 , 931189
128 , 903589
192 , 891058
256 , 891150

9.6

$ vi test.sql
\set id random(1,100000000)
select * from test where id=:id;

$ vi bench.sh
pgbench -M prepared -n -r -f ./test.sql -c 16 -j 16 -T 120
pgbench -M prepared -n -r -f ./test.sql -c 32 -j 32 -T 120
pgbench -M prepared -n -r -f ./test.sql -c 64 -j 64 -T 120
pgbench -M prepared -n -r -f ./test.sql -c 72 -j 72 -T 120
pgbench -M prepared -n -r -f ./test.sql -c 86 -j 86 -T 120
pgbench -M prepared -n -r -f ./test.sql -c 96 -j 96 -T 120
pgbench -M prepared -n -r -f ./test.sql -c 128 -j 128 -T 120
pgbench -M prepared -n -r -f ./test.sql -c 192 -j 192 -T 120
pgbench -M prepared -n -r -f ./test.sql -c 256 -j 256 -T 120

$ . ./bench.sh

测试结果

并发数 , TPS

16 , 352524
32 , 611931
64 , 971911
72 , 994487
86 , 969640
96 , 970625
128 , 924109
192 , 893637
256 , 905555

对比

pic1

二、单表 update based on PK only

环境准备

单表1亿数据量,基于PK的更新。

考察高并发下的数据更新,autovacuum优化能力,XLOG优化能力。

SQL如下

create table test(id int, info text, crt_time timestamp) with (autovacuum_freeze_max_age=1500000000, autovacuum_freeze_table_age=1400000000, autovacuum_multixact_freeze_max_age=1500000000, autovacuum_multixact_freeze_table_age=1400000000);;
insert into test select generate_series(1,100000000),md5(random()::text),clock_timestamp();
set maintenance_work_mem='16GB';
alter table test add constraint test_pkey primary key (id);
vacuum analyze test;
select * from test limit 10;
 id |               info               |          crt_time          
----+----------------------------------+----------------------------
  1 | 652802c64d630dfbde4770ed0d2a649c | 2016-10-02 15:38:12.866501
  2 | c31d0e4ddd63618dbbb1c2a7932eae87 | 2016-10-02 15:38:12.866581
  3 | f1689301bf26efd4050a88d50713ac66 | 2016-10-02 15:38:12.866586
  4 | 155df78e2cd8f14291ddfd3f9179cde3 | 2016-10-02 15:38:12.866589
  5 | 12aa2596dadb2af637bee07f05e78feb | 2016-10-02 15:38:12.866592
  6 | 915f06af99501e629631b37f46f23816 | 2016-10-02 15:38:12.866595
  7 | be79647d50351435b903c03a377e0ff5 | 2016-10-02 15:38:12.866597
  8 | 676bedb18ffe2c7cc30a0d7ff081e7da | 2016-10-02 15:38:12.8666
  9 | e7111e4c9f910ac00312f7a67ddbd162 | 2016-10-02 15:38:12.866602
 10 | 22c6dd399e49663f3f14ce7634ff56d8 | 2016-10-02 15:38:12.866604
(10 rows)

9.5

$ vi test.sql
\setrandom id 1 100000000
update test set crt_time=now() where id=:id;

$ vi bench.sh
pgbench -M prepared -n -r -f ./test.sql -c 16 -j 16 -T 120
pgbench -M prepared -n -r -f ./test.sql -c 32 -j 32 -T 120
pgbench -M prepared -n -r -f ./test.sql -c 64 -j 64 -T 120
pgbench -M prepared -n -r -f ./test.sql -c 72 -j 72 -T 120
pgbench -M prepared -n -r -f ./test.sql -c 86 -j 86 -T 120
pgbench -M prepared -n -r -f ./test.sql -c 96 -j 96 -T 120
pgbench -M prepared -n -r -f ./test.sql -c 128 -j 128 -T 120
pgbench -M prepared -n -r -f ./test.sql -c 192 -j 192 -T 120
pgbench -M prepared -n -r -f ./test.sql -c 256 -j 256 -T 120

$ . ./bench.sh

并发数 , TPS

16 , 160502
32 , 202785
64 , 146669
72 , 136701
86 , 124060
96 , 116345
128 , 100642
192 , 76714
256 , 57945

9.6

$ vi test.sql
\set id random(1,100000000)
update test set crt_time=now() where id=:id;

$ vi bench.sh
pgbench -M prepared -n -r -f ./test.sql -c 16 -j 16 -T 120
pgbench -M prepared -n -r -f ./test.sql -c 32 -j 32 -T 120
pgbench -M prepared -n -r -f ./test.sql -c 64 -j 64 -T 120
pgbench -M prepared -n -r -f ./test.sql -c 72 -j 72 -T 120
pgbench -M prepared -n -r -f ./test.sql -c 86 -j 86 -T 120
pgbench -M prepared -n -r -f ./test.sql -c 96 -j 96 -T 120
pgbench -M prepared -n -r -f ./test.sql -c 128 -j 128 -T 120
pgbench -M prepared -n -r -f ./test.sql -c 192 -j 192 -T 120
pgbench -M prepared -n -r -f ./test.sql -c 256 -j 256 -T 120

$ . ./bench.sh

并发数 , TPS

16 , 216928
32 , 289555
64 , 249844
72 , 233400
86 , 214760
96 , 203196
128 , 178891
192 , 152073
256 , 129707

对比

pic2

三、单表 autocommit 单条 insert only

环境准备

一张空表,22个字段,每行约201字节,包含两个索引。

采用autocommit的模式,每个连接每个事务插入一条记录。

考察高并发下的数据插入,数据块扩展能力,XLOG优化能力。

SQL如下

create table test(id serial8, c1 int8 default 0, c2 int8 default 0, c3 int8 default 0, c4 int8 default 0, c5 int8 default 0, c6 int8 default 0, c7 int8 default 0, c8 int8 default 0, c9 int8 default 0, c10 int8 default 0, c11 int8 default 0, c12 int8 default 0, c13 int8 default 0, c14 int8 default 0, c15 int8 default 0, c16 int8 default 0, c17 int8 default 0, c18 int8 default 0, c19 int8 default 0, c20 int8 default 0, crt_time timestamptz) with (autovacuum_enabled=off, autovacuum_freeze_max_age=1500000000, autovacuum_freeze_table_age=1400000000, autovacuum_multixact_freeze_max_age=1500000000, autovacuum_multixact_freeze_table_age=1400000000); 
alter sequence test_id_seq cache 100000;
create index idx_test_1 on test using brin(id);
create index idx_test_2 on test using brin(crt_time);

测试脚本如下

$ vi test.sql
insert into test(crt_time) values(now());

$ vi bench.sh
pgbench -M prepared -n -r -f ./test.sql -c 16 -j 16 -T 120
pgbench -M prepared -n -r -f ./test.sql -c 32 -j 32 -T 120
pgbench -M prepared -n -r -f ./test.sql -c 64 -j 64 -T 120
pgbench -M prepared -n -r -f ./test.sql -c 72 -j 72 -T 120
pgbench -M prepared -n -r -f ./test.sql -c 86 -j 86 -T 120
pgbench -M prepared -n -r -f ./test.sql -c 96 -j 96 -T 120
pgbench -M prepared -n -r -f ./test.sql -c 128 -j 128 -T 120
pgbench -M prepared -n -r -f ./test.sql -c 192 -j 192 -T 120
pgbench -M prepared -n -r -f ./test.sql -c 256 -j 256 -T 120

$ . ./bench.sh

9.5

并发数 , TPS

16 , 234043
32 , 263893
64 , 208993
72 , 199966
86 , 188826
96 , 182672
128 , 164270
192 , 130384
256 , 104563

9.6

并发数 , TPS

16 , 268877
32 , 313320
64 , 324775
72 , 318060
86 , 307001
96 , 296028
128 , 256317
192 , 202902
256 , 154469

对比

pic3

四、单表 autocommit 批量 insert only

环境准备

批量插入,考察的同样是高并发处理单表时XLOG的优化能力,数据文件的扩展优化能力。

测试脚本如下

一次插入400条记录。

$ vi test.sql
insert into test(crt_time) values(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now());


$ . ./bench.sh

9.5

并发数 , TPS

16 , 2875
32 , 2752
64 , 2534
72 , 2473
86 , 2424
96 , 2372
128 , 2362
192 , 2283
256 , 2140

9.6

并发数 , TPS

16 , 3450
32 , 3363
64 , 2905
72 , 2792
86 , 3155
96 , 3320
128 , 2992
192 , 3152
256 , 3070

对比

pic4

五、多表 autocommit 单条 insert only

环境准备

每个连接对应一张空表,22个字段,每行约201字节,包含两个索引。

采用autocommit的模式,每个连接每个事务插入一条记录。

考察高并发下的数据插入,XLOG优化能力。

与单表不同,因为没有单表的文件扩展并发要求,所以不考察数据块扩展能力。

SQL如下

create table test(id serial8, c1 int8 default 0, c2 int8 default 0, c3 int8 default 0, c4 int8 default 0, c5 int8 default 0, c6 int8 default 0, c7 int8 default 0, c8 int8 default 0, c9 int8 default 0, c10 int8 default 0, c11 int8 default 0, c12 int8 default 0, c13 int8 default 0, c14 int8 default 0, c15 int8 default 0, c16 int8 default 0, c17 int8 default 0, c18 int8 default 0, c19 int8 default 0, c20 int8 default 0, crt_time timestamptz) with (autovacuum_enabled=off, autovacuum_freeze_max_age=1500000000, autovacuum_freeze_table_age=1400000000, autovacuum_multixact_freeze_max_age=1500000000, autovacuum_multixact_freeze_table_age=1400000000);  
alter sequence test_id_seq cache 100000;
create index idx_test_1 on test using brin(id);
create index idx_test_2 on test using brin(crt_time);

批量创建测试表,测试脚本

for ((i=1;i<=256;i++)); do psql -c "create table test$i(like test including all) with (autovacuum_enabled=off, autovacuum_freeze_max_age=1500000000, autovacuum_freeze_table_age=1400000000, autovacuum_multixact_freeze_max_age=1500000000, autovacuum_multixact_freeze_table_age=1400000000)"; done

for ((i=1;i<=256;i++)); do echo "insert into test$i(crt_time) values(now());" > ~/test$i.sql; done

测试脚本如下

$ vi bench.sh
for ((i=1;i<=16;i++)); do psql -c "truncate test$i"; done
psql -c "checkpoint;"
for ((i=1;i<=16;i++)); do pgbench -M prepared -n -r -f ./test$i.sql -c 1 -j 1 -T 120 >/tmp/test_16_$i.log & done
sleep 130
for ((i=1;i<=32;i++)); do psql -c "truncate test$i"; done
psql -c "checkpoint;"
for ((i=1;i<=32;i++)); do pgbench -M prepared -n -r -f ./test$i.sql -c 1 -j 1 -T 120 >/tmp/test_32_$i.log & done
sleep 130
for ((i=1;i<=64;i++)); do psql -c "truncate test$i"; done
psql -c "checkpoint;"
for ((i=1;i<=64;i++)); do pgbench -M prepared -n -r -f ./test$i.sql -c 1 -j 1 -T 120 >/tmp/test_64_$i.log & done
sleep 130
for ((i=1;i<=72;i++)); do psql -c "truncate test$i"; done
psql -c "checkpoint;"
for ((i=1;i<=72;i++)); do pgbench -M prepared -n -r -f ./test$i.sql -c 1 -j 1 -T 120 >/tmp/test_72_$i.log & done
sleep 130
for ((i=1;i<=86;i++)); do psql -c "truncate test$i"; done
psql -c "checkpoint;"
for ((i=1;i<=86;i++)); do pgbench -M prepared -n -r -f ./test$i.sql -c 1 -j 1 -T 120 >/tmp/test_86_$i.log & done
sleep 130
for ((i=1;i<=96;i++)); do psql -c "truncate test$i"; done
psql -c "checkpoint;"
for ((i=1;i<=96;i++)); do pgbench -M prepared -n -r -f ./test$i.sql -c 1 -j 1 -T 120 >/tmp/test_96_$i.log & done
sleep 130
for ((i=1;i<=128;i++)); do psql -c "truncate test$i"; done
psql -c "checkpoint;"
for ((i=1;i<=128;i++)); do pgbench -M prepared -n -r -f ./test$i.sql -c 1 -j 1 -T 120 >/tmp/test_128_$i.log & done
sleep 130
for ((i=1;i<=192;i++)); do psql -c "truncate test$i"; done
psql -c "checkpoint;"
for ((i=1;i<=192;i++)); do pgbench -M prepared -n -r -f ./test$i.sql -c 1 -j 1 -T 120 >/tmp/test_192_$i.log & done
sleep 130
for ((i=1;i<=256;i++)); do psql -c "truncate test$i"; done
psql -c "checkpoint;"
for ((i=1;i<=256;i++)); do pgbench -M prepared -n -r -f ./test$i.sql -c 1 -j 1 -T 120 >/tmp/test_256_$i.log & done
sleep 130


$ . ./bench.sh

统计

$ vi res.sh

x=0; for ((i=1;i<=16;i++)); do y=`cat /tmp/test_16_$i.log | grep "excluding connections establishing" | awk '{print $3}' | awk -F "." '{print $1}'`; x=$(($x+$y)); done; echo "16 , $x"
x=0; for ((i=1;i<=32;i++)); do y=`cat /tmp/test_32_$i.log | grep "excluding connections establishing" | awk '{print $3}' | awk -F "." '{print $1}'`; x=$(($x+$y)); done; echo "32 , $x"
x=0; for ((i=1;i<=64;i++)); do y=`cat /tmp/test_64_$i.log | grep "excluding connections establishing" | awk '{print $3}' | awk -F "." '{print $1}'`; x=$(($x+$y)); done; echo "64 , $x"
x=0; for ((i=1;i<=72;i++)); do y=`cat /tmp/test_72_$i.log | grep "excluding connections establishing" | awk '{print $3}' | awk -F "." '{print $1}'`; x=$(($x+$y)); done; echo "72 , $x"
x=0; for ((i=1;i<=86;i++)); do y=`cat /tmp/test_86_$i.log | grep "excluding connections establishing" | awk '{print $3}' | awk -F "." '{print $1}'`; x=$(($x+$y)); done; echo "86 , $x"
x=0; for ((i=1;i<=96;i++)); do y=`cat /tmp/test_96_$i.log | grep "excluding connections establishing" | awk '{print $3}' | awk -F "." '{print $1}'`; x=$(($x+$y)); done; echo "96 , $x"
x=0; for ((i=1;i<=128;i++)); do y=`cat /tmp/test_128_$i.log | grep "excluding connections establishing" | awk '{print $3}' | awk -F "." '{print $1}'`; x=$(($x+$y)); done; echo "128 , $x"
x=0; for ((i=1;i<=192;i++)); do y=`cat /tmp/test_192_$i.log | grep "excluding connections establishing" | awk '{print $3}' | awk -F "." '{print $1}'`; x=$(($x+$y)); done; echo "192 , $x"
x=0; for ((i=1;i<=256;i++)); do y=`cat /tmp/test_256_$i.log | grep "excluding connections establishing" | awk '{print $3}' | awk -F "." '{print $1}'`; x=$(($x+$y)); done; echo "256 , $x"


$ . ./res.sh

9.5

并发数 , TPS

16 , 225198
32 , 280587
64 , 222368
72 , 213024
86 , 199209
96 , 190801
128 , 167913
192 , 131405
256 , 102913

9.6

并发数 , TPS

16 , 288706
32 , 351340
64 , 382612
72 , 377392
86 , 362909
96 , 334932
128 , 279157
192 , 200568
256 , 152104

对比

pic5

六、多表 autocommit 批量 insert only

环境准备

批量插入,考察的同样是高并发处理单表时XLOG的优化能力,数据文件的扩展优化能力。

测试脚本如下

一次插入400条记录。

for ((i=1;i<=256;i++)); do echo "insert into test$i(crt_time) values(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now()),(now());" > ~/test$i.sql; done


$ . ./bench.sh

统计

$ . ./res.sh

9.5

并发数 , TPS

16 , 5693
32 , 5767
64 , 5297
72 , 4073
86 , 5374
96 , 4978
128 , 5438
192 , 5247
256 , 5376

9.6

并发数 , TPS

16 , 6007
32 , 6120
64 , 5289
72 , 5501
86 , 5503
96 , 5605
128 , 5537
192 , 5467
256 , 5376

对比

pic6

小结

PostgreSQL 9.6的锁控制能力又有比较大的进步,在WAL的高并发管理,获取快照,扩展数据文件等方面都有较大改进,相比9.5在scale-up的扩展能力上又上了一个新的台阶,在高并发的读,插入,更新场景,都有非常明显的性能提升。

结合9.6的多核并行计算,可以适合高并发的TP场景,又能在业务低谷时充分发挥硬件能力,处理AP的报表和分析需求,完成业务对TP+AP的混合需求。

对于3,4,5,6的测试CASE,由于是批量入库,可以关闭测试表的autovacuum,达到更好的性能。

现在的CPU一直在往多核的方向发展,32核已经是非常普遍的配置,多的甚至可以达到上千核。

使用PostgreSQL可以更好的发挥硬件的性能,虽然PostgreSQL已经在内核层面支持sharding了,但是使用单机能解决的场景,不推荐使用sharding。

目前sharding对应用开发的限制还比较多,比如大多数sharding技术需要解决几个痛点:

分布式事务的控制,跨库JOIN,全局一致性,全局约束,数据倾斜,扩容,备份,容灾,迁移,确保全局一致性的高可用技术。等等一系列需要考虑的问题。

Count

相关实践学习
使用PolarDB和ECS搭建门户网站
本场景主要介绍基于PolarDB和ECS实现搭建门户网站。
阿里云数据库产品家族及特性
阿里云智能数据库产品团队一直致力于不断健全产品体系,提升产品性能,打磨产品功能,从而帮助客户实现更加极致的弹性能力、具备更强的扩展能力、并利用云设施进一步降低企业成本。以云原生+分布式为核心技术抓手,打造以自研的在线事务型(OLTP)数据库Polar DB和在线分析型(OLAP)数据库Analytic DB为代表的新一代企业级云原生数据库产品体系, 结合NoSQL数据库、数据库生态工具、云原生智能化数据库管控平台,为阿里巴巴经济体以及各个行业的企业客户和开发者提供从公共云到混合云再到私有云的完整解决方案,提供基于云基础设施进行数据从处理、到存储、再到计算与分析的一体化解决方案。本节课带你了解阿里云数据库产品家族及特性。
目录
相关文章
|
1月前
|
存储 关系型数据库 MySQL
MySQL vs. PostgreSQL:选择适合你的开源数据库
在众多开源数据库中,MySQL和PostgreSQL无疑是最受欢迎的两个。它们都有着强大的功能、广泛的社区支持和丰富的生态系统。然而,它们在设计理念、性能特点、功能特性等方面存在着显著的差异。本文将从这三个方面对MySQL和PostgreSQL进行比较,以帮助您选择更适合您需求的开源数据库。
144 4
|
4月前
|
关系型数据库 MySQL 数据库
探究数据库开源协议:PostgreSQL vs MySQL
探究数据库开源协议:PostgreSQL vs MySQL
|
7月前
|
存储 关系型数据库 MySQL
【专栏】在众多开源数据库中,MySQL和PostgreSQL无疑是最受欢迎的两个
【4月更文挑战第27天】MySQL与PostgreSQL是两大主流开源数据库,各有特色。MySQL注重简单、便捷和高效,适合读操作密集场景,而PostgreSQL强调灵活、强大和兼容,擅长并发写入与复杂查询。MySQL支持多种存储引擎和查询缓存,PostgreSQL则具备扩展性、强事务支持和高可用特性。选择时应考虑项目需求、团队技能和预期收益。
103 2
|
关系型数据库 分布式数据库 数据库
沉浸式学习PostgreSQL|PolarDB 2: 电商高并发秒杀业务、跨境电商高并发队列消费业务
业务场景介绍: 高并发秒杀业务 秒杀业务在电商中最为常见, 可以抽象成热点记录(行)的高并发更新. 而通常在数据库中最细粒度的锁是行锁, 所以热门商品将会被大量会话涌入, 出现锁等待, 甚至把数据库的会话占满, 导致其他请求无法获得连接产生业务故障. 业务场景介绍: 高并发队列消费业务 在跨境电商业务中可能涉及这样的场景, 由于有上下游产业链的存在, 1、用户下单后, 上下游厂商会在自己系统中生成一笔订单记录并反馈给对方, 2、在收到反馈订单后, 本地会先缓存反馈的订单记录队列, 3、然后后台再从缓存取出订单并进行处理.
432 1
|
7月前
|
关系型数据库 MySQL 数据处理
MySQL vs. PostgreSQL:选择适合你的开源数据库
在当今信息时代,开源数据库成为许多企业和开发者的首选。本文将比较两个主流的开源数据库——MySQL和PostgreSQL,分析它们的特点、优势和适用场景,以帮助读者做出明智的选择。
|
存储 关系型数据库 MySQL
如何选择最适合你的数据库解决方案:PostgreSQL VS MySQL 技术选型对比
如何选择最适合你的数据库解决方案:PostgreSQL VS MySQL 技术选型对比
318 1
|
关系型数据库 测试技术 分布式数据库
PolarDB | PostgreSQL 高并发队列处理业务的数据库性能优化实践
在电商业务中可能涉及这样的场景, 由于有上下游关系的存在, 1、用户下单后, 上下游厂商会在自己系统中生成一笔订单记录并反馈给对方, 2、在收到反馈订单后, 本地会先缓存反馈的订单记录队列, 3、然后后台再从缓存取出订单并进行处理. 如果是高并发的处理, 因为大家都按一个顺序获取, 容易产生热点, 可能遇到取出队列遇到锁冲突瓶颈、IO扫描浪费、CPU计算浪费的瓶颈. 以及在清除已处理订单后, 索引版本未及时清理导致的回表版本判断带来的IO浪费和CPU运算浪费瓶颈等. 本文将给出“队列处理业务的数据库性能优化”优化方法和demo演示. 性能提升10到20倍.
841 4
|
存储 算法 Oracle
PostgreSQL的MVCC vs InnoDB的MVCC
PostgreSQL的MVCC vs InnoDB的MVCC
99 0
PostgreSQL的MVCC vs InnoDB的MVCC
|
存储 SQL JSON
大分区表高并发性能提升100倍?阿里云 RDS PostgreSQL 12 特性解读
世界上几乎最强大的开源数据库系统 PostgreSQL,于 2019 年 10 月 3 日发布了 12 版本,该版本已经在阿里云正式发布。PostgreSQL 12 在功能和性能上都有很大提升,如大分区表高并发性能提升百倍,B-tree 索引空间和性能优化,实现 SQL 2016 标准的 JSON 特性,支持多列 MCV(Most-Common-Value)统计,内联 CTE(Common table expressions)以及可插拔的表存储访问接口等。本文对部分特性进行解读。
2969 0
大分区表高并发性能提升100倍?阿里云 RDS PostgreSQL 12 特性解读
|
弹性计算 关系型数据库 数据库
PostgreSQL 高并发应用数据库设计与优化实践 PPT
标签 PostgreSQL , 高并发 , 数据库设计 , 优化 背景 PG生态 常见的高并发场景与业务 高并发场景带来的挑战 高并发场景数据库设计与优化 阿里RDS PG在高并发场景的内核改进 案例 PDF 《PostgreSQL 高并发应用数据库设计与优化实践》   免费领取阿里云RDS PostgreSQL实例、ECS虚拟机
980 0

相关产品

  • 云原生数据库 PolarDB
  • 云数据库 RDS PostgreSQL 版