python小专题——time模块

简介: time常用函数         最近参与python的一个项目,发现经常遇到一些常用的模块,而每次使用时,我都要查一遍。

                                                                            time常用函数   

     最近参与python的一个项目,发现经常遇到一些常用的模块,而每次使用时,我都要查一遍。终于,我决定要各个击破,对常用的python小知识进行总结。下面总结了python中对时间处理的常见函数。

在开始之前,首先要说明这几点:

  1. 在Python中,通常有这几种方式来表示时间:1)、时间戳 2)、格式化的时间字符串 3)、元组(struct_time)共九个元素。由于Python的time模块实现主要调用C库,所以各个平台可能有所不同。
  2. UTC(Coordinated Universal Time,世界协调时)亦即格林威治天文时间,世界标准时间。在中国为UTC+8。DST(Daylight Saving Time)即夏令时。
  3. 时间戳(timestamp)的方式:通常来说,时间戳表示的是从1970年1月1日08:00:00开始按秒计算的偏移量。运行“type(time.time())”,返回的是float类型。返回时间戳方式的函数主要有time(),clock()等。
  4. 元组(struct_time)方式:struct_time元组共有9个元素,返回struct_time的函数主要有gmtime(),localtime(),strptime()。

     time的函数较多,但常用的也就那几个。使用time函数前,照例先导入time模块。介绍常用函数前要先了解最基础的函数:

    (1)、time函数——返回当前时间的时间戳,浮点数格式

>>> from time import *   #导入python模块的所有函数
>>> time()
1370485361.442

    (2)、localtime函数——localtime([secs]),将一个时间戳转换为当前时区的struct_time。secs参数未提供,则以当前时间为准。

#默认以当前时间为准
>>> localtime()
time.struct_time(tm_year=2013, tm_mon=6, tm_mday=6, tm_hour=10, tm_min=39, tm_sec=49, tm_wday=3, tm_yday=157, tm_isdst=0)
#等同于localtime()
>>> localtime(time())
time.struct_time(tm_year=2013, tm_mon=6, tm_mday=6, tm_hour=10, tm_min=40, tm_sec=37, tm_wday=3, tm_yday=157, tm_isdst=0)
#指定一个时间戳参数
>>> localtime(1370485361.442)
time.struct_time(tm_year=2013, tm_mon=6, tm_mday=6, tm_hour=10, tm_min=22, tm_sec=41, tm_wday=3, tm_yday=157, tm_isdst=0)
#默认从1970年1月1日开始
>>> localtime(345)
time.struct_time(tm_year=1970, tm_mon=1, tm_mday=1, tm_hour=8, tm_min=5, tm_sec=45, tm_wday=3, tm_yday=1, tm_isdst=0)
>>> localtime(1)
time.struct_time(tm_year=1970, tm_mon=1, tm_mday=1, tm_hour=8, tm_min=0, tm_sec=1, tm_wday=3, tm_yday=1, tm_isdst=0)

   localtime()输出参数说明:

索引(Index) 属性(Attribute) 值(Values)
0  tm_year(年)  比如2013 
1  tm_mon(月)  1 - 12
2  tm_mday(日)  1 - 31
3  tm_hour(时)  0 - 23
4  tm_min(分)  0 - 59
5  tm_sec(秒)  0 - 61
6  tm_wday(weekday)  0 - 6(0表示周日)
7  tm_yday(一年中的第几天)  1 - 366
8  tm_isdst(是否是夏令时)  默认为-1

   

 

 

 

 

 

   

   

 

   (3)、gmtime()函数——和localtime()方法类似,gmtime()方法是将一个时间戳转换为UTC时区(0时区)的struct_time。

>>> gmtime()
time.struct_time(tm_year=2013, tm_mon=6, tm_mday=6, tm_hour=4, tm_min=2, tm_sec=47, tm_wday=3, tm_yday=157, tm_isdst=0)
>>> gmtime(time())
time.struct_time(tm_year=2013, tm_mon=6, tm_mday=6, tm_hour=4, tm_min=2, tm_sec=53, tm_wday=3, tm_yday=157, tm_isdst=0)

    (4)、asctime()函数——asctime([tuple]), 把一个表示时间的元组或者struct_time表示为这种形式:'Sun Jun 20 23:21:05 1993'。如果没有参数,将会将time.localtime()作为参数传入。

>>> asctime()#默认是当前时间的struct time
'Thu Jun 06 10:55:40 2013'
>>> asctime(localtime())
'Thu Jun 06 10:56:02 2013'

    (5)、ctime函数——ctime([secs]),把一个时间戳(按秒计算的浮点数)转化为time.asctime()的形式。如果参数未给或者为None的时候,将会默认time.time()为参数。它的作用相当于time.asctime(time.localtime(secs))。

>>> ctime() #等同于ctime(time())
'Thu Jun 06 11:05:34 2013'
>>> ctime(time())
'Thu Jun 06 11:05:44 2013'
#默认从1970年1月1日08:00:00开始
>>> ctime(238)
'Thu Jan 01 08:03:58 1970'
>>> ctime(1)
'Thu Jan 01 08:00:01 1970'

 以上是基础的时间函数,下面是常用的时间处理函数。

 

       实际存储中,更多的是存储时间戳(这样易于时间的计算,有更好的存储性能)而不是更易于我们阅读的时间格式,所以,我们有将时间戳转换为普通时间格式的冲动——strftime函数。

     (6)、strftime函数——strftime(format[, tuple]): 把一个代表时间的元组或者struct_time(如由time.localtime()和time.gmtime()返回)转化为格式化的时间字符串。 如果tuple未指定,将传入time.localtime()。如果元组中任何一个元素越界,ValueError的错误将会被抛出。

>>> strftime('%Y-%m-%d %H:%M:%S', localtime(time()))
'2013-06-06 11:10:57'  #这是我们比较喜爱的时间格式
>>> strftime('%Y-%m-%d', localtime())
'2013-06-06'
>>> strftime('%Y-%m-%d %X', localtime())  ==>  %X给出默认本地相应时间
'2013-06-06 11:12:39'

 Format参数说明:

格式 含义
%a 本地(locale)简化星期名称
%A 本地完整星期名称
%b 本地简化月份名称
%B 本地完整月份名称
%c 本地相应的日期和时间表示
%d 一个月中的第几天(01 - 31)
%H 一天中的第几个小时(24小时制,00 - 23)
%I 第几个小时(12小时制,01 - 12)
%j 一年中的第几天(001 - 366)
%m 月份(01 - 12)
%M 分钟数(00 - 59)
%p 本地am或者pm的相应符
%S 秒(01 - 61)
%U 一年中的星期数。(00 - 53星期天是一个星期的开始。)第一个星期天之前的所有天数都放在第0周。
%w 一个星期中的第几天(0 - 6,0是星期天)
%W 和%U基本相同,不同的是%W以星期一为一个星期的开始。
%x 本地相应日期
%X 本地相应时间
%y 去掉世纪的年份(00 - 99)
%Y 完整的年份
%Z 时区的名字(如果不存在为空字符)
%% ‘%’字符

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(7)、mktime()函数——mktime(tuple),将一个struct_time或者9个参数的时间元组转化为时间戳。

>>> mktime(localtime())
1370490962.0
>>> mktime(2013, 6, 6, 13, 3, 38, 1, 48, 0) #这样写是错的

Traceback (most recent call last):
  File "<pyshell#28>", line 1, in <module>
    mktime(2013, 6, 6, 13, 3, 38, 1, 48, 0)
TypeError: mktime() takes exactly one argument (9 given)
>>> mktime((2013, 6, 6, 13, 3, 38, 1, 48, 0))#注意这里9个参数的元组作为一个参数
1370495018.0
>>> 

    (8)、strptime()函数——strptime(string[, format]):把一个格式化时间字符串转化为struct_time。它是strftime()的逆操作。

>>> strptime('2013-06-06 11:12:39','%Y-%m-%d %X')
time.struct_time(tm_year=2013, tm_mon=6, tm_mday=6, tm_hour=11, tm_min=12, tm_sec=39, tm_wday=3, tm_yday=157, tm_isdst=-1)

 

   其他常用的时间函数:

  (9)、sleep()函数——sllep(secs),可以通过调用time.sleep来挂起当前的进程。time.sleep接收一个浮点型参数,表示进程挂起的时间。

     (10)、clock()函数——这个函数在不同的系统上含义不同。 在Linux系统上,它返回的是“进程时间”,它是用秒表示的浮点数(时间戳)。在windows操作系统上,time.clock() 返回第一次调用该方法到现在的秒数,其精确度高于1微秒。可以使用该函数来记录程序执行的时间。

总结一下该函数有两个功能:
  在第一次调用的时候,返回的是程序运行的实际时间;
  以第二次之后的调用,返回的是自第一次调用后,到这次调用的时间间隔

>>> clock()
1.655286571487689e-06   #第一次调用是程序运行时间
>>> clock()
8.366160976619078  #第二次调用是与第一次的时间间隔
>>> clock()    #第三次调用是与第一次的时间间隔
12.056175791433892
>>> sleep(1)

 

 总结一下:

(1)、常见应用

    1)、获取当前时间:

   time.time() 获取当前时间戳
   time.localtime() 当前时间的struct_time形式
   time.ctime() 当前时间的字符串形式

    2)、将时间戳转换为字符串:

  time.strftime("%Y-%m-%d %H:%M:%S", time.localtime())

    3)、将字符串转换为时间戳:

  time.mktime(time.strptime('2013-06-06 09:00','%Y-%m-%d %H:%M'))

(2)、在Python中共有三种表达方式以及这三种方式之间的转换:

   1)、timestamp

   2)、tuple或者struct_time

   3)、格式化字符串。

 

当然time模块还有其它函数,目前还没用到,用到再进行补充。

 

作者: zhoujie
本文版权归作者和博客园共有,欢迎转载,但未经作者同意必须保留此段声明,且在文章页面明显位置给出原文连接,不然我担心博客园找你算账
如果您觉得本文对你有帮助,请竖起您的大拇指右下角点推荐,也可以关注我
目录
相关文章
|
2月前
|
开发者 Python
如何在Python中管理模块和包的依赖关系?
在实际开发中,通常会结合多种方法来管理模块和包的依赖关系,以确保项目的顺利进行和可维护性。同时,要及时更新和解决依赖冲突等问题,以保证代码的稳定性和可靠性
57 4
|
20天前
|
Python
Python Internet 模块
Python Internet 模块。
118 74
|
2月前
|
算法 数据安全/隐私保护 开发者
马特赛特旋转算法:Python的随机模块背后的力量
马特赛特旋转算法是Python `random`模块的核心,由松本真和西村拓士于1997年提出。它基于线性反馈移位寄存器,具有超长周期和高维均匀性,适用于模拟、密码学等领域。Python中通过设置种子值初始化状态数组,经状态更新和输出提取生成随机数,代码简单高效。
118 63
|
2月前
|
测试技术 Python
手动解决Python模块和包依赖冲突的具体步骤是什么?
需要注意的是,手动解决依赖冲突可能需要一定的时间和经验,并且需要谨慎操作,避免引入新的问题。在实际操作中,还可以结合使用其他方法,如虚拟环境等,来更好地管理和解决依赖冲突😉。
|
2月前
|
持续交付 Python
如何在Python中自动解决模块和包的依赖冲突?
完全自动解决所有依赖冲突可能并不总是可行,特别是在复杂的项目中。有时候仍然需要人工干预和判断。自动解决的方法主要是提供辅助和便捷,但不能完全替代人工的分析和决策😉。
|
2月前
|
JSON Linux 数据格式
Python模块:从入门到精通,只需一篇文章!
Python中的模块是将相关代码组织在一起的单元,便于重用和维护。模块可以是Python文件或C/C++扩展,Python标准库中包含大量模块,如os、sys、time等,用于执行各种任务。定义模块只需创建.py文件并编写代码,导入模块使用import语句。此外,Python还支持自定义模块和包,以及虚拟环境来管理项目依赖。
Python模块:从入门到精通,只需一篇文章!
|
2月前
|
Python
Python的模块和包
总之,模块和包是 Python 编程中非常重要的概念,掌握它们可以帮助我们更好地组织和管理代码,提高开发效率和代码质量
45 5
|
2月前
|
数据可视化 Python
如何在Python中解决模块和包的依赖冲突?
解决模块和包的依赖冲突需要综合运用多种方法,并且需要团队成员的共同努力和协作。通过合理的管理和解决冲突,可以提高项目的稳定性和可扩展性
|
2月前
|
Python
在Python中,可以使用内置的`re`模块来处理正则表达式
在Python中,可以使用内置的`re`模块来处理正则表达式
62 5
|
2月前
|
Java 程序员 开发者
Python的gc模块
Python的gc模块