如何排查Java内存泄露(内附各种排查工具介绍)

简介: 今天刚刚才加一个故障review会议, 故障非常典型, 在google也可以找到相似案例介绍。 在排查问题的过程中,使用了大量的工具, 发现有问题的地方还不只一个,总结一下. (本篇文章不会重点描述案例本身,重点会介绍个人对java内存泄露问题的排查思路和各种工具的使用)。

今天刚刚才加一个故障review会议, 故障非常典型, google下也可以找到相似案例介绍。 在排查问题的过程中,使用了大量的工具, 发现有问题的地方还不只一个,总结一下. (本篇文章不会重点描述案例本身,重点会介绍个人对java内存泄露问题的排查思路和各种工具的使用)。

java内存泄露典型特征

  • 现象一: 堆/Perm 区不断增长, 没有下降趋势(回收速度赶不上增长速度), 最后不断触发FullGC, 甚至crash(如下两张图是同一个应用的GC和Perm数据, GC触发原因确认是Perm不足)
. 一般是现象二的晚期表现.

_2016_09_28_11_01_16
_2016_09_28_11_01_05

  • 现象二:每次FullGC后, 堆/Perm 区在慢慢的增长, 最后不断触发FullGC, 甚至crash(如下图: 示意图)
    _2016_09_29_12_44_16

java内存泄露场景---PermGen space

  • 原因: 说明Perm不足. Perm存放class,method相关对象,以及运行时常量对象. 如果一个应用加载了大量的class, 那么Perm区存储的信息一般会比较大.另外大量的intern String对象也会导致Perm区不断增长。 此区域大小由-XX:MaxPermSize参数进行设置. (jdk8相关参数已经改变, 这里不讨论)
  • 案例: Groovy动态编译class, xstream String.intern
  • 本质原因: ClassLoader.defineClass和java.lang.String.intern在大量不适宜的场景被调用.
  • 解决方案:

    • 方案1(直接有效): 使用btrace相关工具输出调用ClassLoader.defineClass栈信息, 从栈信息来追溯问题. (代码如下图). 但Btrace 不能trace jvm native方法(官方release btrace 1.3.1中版本声明可以trace native方法, 但尝试无效。如果你清楚如何使用,麻烦告知一下,谢谢).
 ![_2016_09_29_12_59_38](http://ata2-img.cn-hangzhou.img-pub.aliyun-inc.com/c5bbdd783fb0606a9817c8296babce42)

    * **用JProfiler来trace String.intern方法栈
* 方案2: dump heap, 看看哪些class有异常现象(数量), String被Perm区引用的对象信息等.但这种方式不太直观,可以从String数据看看发现可疑问题,没有方案1直观。(如下图: 如果能在日常调试推荐JProfiler**)
![_2016_09_29_1_46_59](http://ata2-img.cn-hangzhou.img-pub.aliyun-inc.com/8e5d32f29e6166695ea976ae8f9ba89d)
* 方案3: 增加-XX:+TraceClassLoading和-XX:+TraceClassUnloading, 看看哪些class加载了,哪些class卸载了. 如果一些特殊的class一直被加载而没有被卸载说明也是有问题的。(如下图)

![_2016_09_29_1_06_46](http://ata2-img.cn-hangzhou.img-pub.aliyun-inc.com/b826a15b81570c02590fda7e598100cd)
* 方案4:执行jmap -permgen(jstat -gcutil  可以查看内存增长速度和区域)命令看看Perm区中的内容, 初步确定是否存在问题 (如下图)

_2016_09_29_3_07_42

_2016_09_29_1_45_46

java内存泄露场景---Java heap space

  • 原因: 长生命周期的对象引用了短生命周期(应该尽快GC回收掉)的对象,最后造成一个对象已经不能在堆区分配足够空间. 注: 这种现象不能完全肯定是内存泄露, 比如: heap本身的设置的过小.

  • 案例: 我个人没有遇到过这种案例, 但模拟过这种情形的Demo: 参考我的《深入浅出JProfiler》文章, 也学习过其他同学的案例: 例如:参数过大并且频繁超时导致内存泄露
  • 解决方案:

    1. 触发FullGC, dump live heap. 标记堆中对象数量, 重点关注可疑对象
    2. 触发FullGC, dump live heap. 标记堆中对象数量, 重点关注可疑对象
    3. 对比步骤1和步骤2 相同对象的数量和大小, 找出可疑对象一一进行排查确认。
    4. 如果步骤3依然无法明确有问题的对象, 那就多执行几次步骤1和步骤2。 在此过程中可以调整GC触发时间, 模拟真实的故障场景 :)
    5. 看看GC后堆的大小是否增长, 如果没有不断增长, 并且持续一段较长时间, 那基本正常(具体看看深入浅出JProfiler文章中的实践章节)。

    注: Java内存泄露的场景还有很多(可以参考下官方的一些文档java memleaks), 有机会后面会继续补充.

目录
相关文章
|
3天前
|
存储 算法 Java
深入浅出Java内存管理
【8月更文挑战第28天】Java的内存管理是每个Java开发者都绕不过去的技术话题。本文将通过生动的比喻和直观的例子,带你走进Java内存管理的奇妙世界。我们将一起探索对象在Java虚拟机中的生命周期,了解栈与堆的区别,以及垃圾回收机制如何默默守护着我们的应用程序。准备好,我们即将启程!
26 14
|
3天前
|
监控 算法 Java
Java内存管理:垃圾收集器的工作原理与调优实践
在Java的世界里,内存管理是一块神秘的领域。它像是一位默默无闻的守护者,确保程序顺畅运行而不被无用对象所困扰。本文将带你一探究竟,了解垃圾收集器如何在后台无声地工作,以及如何通过调优来提升系统性能。让我们一起走进Java内存管理的迷宫,寻找提高应用性能的秘诀。
|
3天前
|
小程序 JavaScript Java
【Java】服务CPU占用率100%,教你用jstack排查定位
本文详细讲解如何使用jstack排查定位CPU高占用问题。首先介绍jstack的基本概念:它是诊断Java应用程序线程问题的工具,能生成线程堆栈快照,帮助找出程序中的瓶颈。接着,文章通过具体步骤演示如何使用`top`命令找到高CPU占用的Java进程及线程,再结合`jstack`命令获取堆栈信息并进行分析,最终定位问题代码。
43 1
【Java】服务CPU占用率100%,教你用jstack排查定位
|
1天前
|
Kubernetes Cloud Native Java
云原生之旅:从容器到微服务的演进之路Java 内存管理:垃圾收集器与性能调优
【8月更文挑战第30天】在数字化时代的浪潮中,企业如何乘风破浪?云原生技术提供了一个强有力的桨。本文将带你从容器技术的基石出发,探索微服务架构的奥秘,最终实现在云端自由翱翔的梦想。我们将一起见证代码如何转化为业务的翅膀,让你的应用在云海中高飞。
|
2天前
|
缓存 Java
Java内存管理秘籍:掌握强软弱幻四大引用,让代码效率翻倍!
【8月更文挑战第29天】在Java中,引用是连接对象与内存的桥梁,主要分为强引用、软引用、弱引用和幻象引用。强引用确保对象生命周期由引用控制,适用于普通对象;软引用在内存不足时可被回收,适合用于内存敏感的缓存;弱引用在无强引用时即可被回收,适用于弱关联如监听器列表;幻象引用需与引用队列配合使用,用于跟踪对象回收状态,适用于执行清理工作。合理使用不同类型的引用车可以提升程序性能和资源管理效率。
20 4
|
3天前
|
Java 编译器 开发者
深入浅出Java内存模型
【8月更文挑战第28天】Java内存模型(JMM)是理解Java并发编程不可或缺的一环。本文通过浅显易懂的方式,带你一探JMM的奥秘,从基本概念到工作原理,再到实际代码示例,逐步揭开Java内存模型的神秘面纱。无论你是初学者还是有一定经验的开发者,这篇文章都将为你提供新的视角和深入的理解。
|
2天前
|
NoSQL Java 测试技术
Golang内存分析工具gctrace和pprof实战
文章详细介绍了Golang的两个内存分析工具gctrace和pprof的使用方法,通过实例分析展示了如何通过gctrace跟踪GC的不同阶段耗时与内存量对比,以及如何使用pprof进行内存分析和调优。
14 0
Golang内存分析工具gctrace和pprof实战
|
4天前
|
存储 缓存 Java
Java内存模型(JMM)
Java内存模型(JMM)是一个抽象概念,用于规范程序中各种变量(实例字段、静态字段及数组元素)的访问方式,确保不同Java虚拟机(JVM)上的并发程序结果一致可靠。JMM定义了主存储器(所有线程共享)与工作存储器(线程私有)的概念,线程间通过主存储器进行通信。JMM具备三大特性:原子性(确保基本读写操作的不可分割)、可见性(确保一个线程对共享变量的修改对其他线程可见)、有序性(防止指令被处理器或编译器重排序影响程序逻辑)。通过这些特性,JMM解决了多线程环境下的数据一致性问题。
|
12天前
|
存储 编译器 C语言
【C语言篇】数据在内存中的存储(超详细)
浮点数就采⽤下⾯的规则表⽰,即指数E的真实值加上127(或1023),再将有效数字M去掉整数部分的1。
|
2月前
|
存储 分布式计算 Hadoop
HadoopCPU、内存、存储限制
【7月更文挑战第13天】
126 14
下一篇
云函数