Java并发专题 并发编程的优缺点

简介: 凡事总有好坏两面,并发编程具有哪些优缺点?以及在进行并发编程时应该了解和掌握的概念是什么?这篇文章主要以这几个问题来谈一谈。

一直以来并发编程对于刚入行的小白来说总是觉得高深莫测,于是乎,就诞生了想写点东西记录下,以提升理解和堆并发编程的认知。为什么需要用的并发?

凡事总有好坏两面,之间的trade-off是什么,也就是说并发编程具有哪些缺点?以及在进行并发编程时应该了解和掌握的概念是什么?这篇文章主要以这三个问题来谈一谈。

1.为什么要用到并发
一直以来,硬件的发展极其迅速,也有一个很著名的"摩尔定律",可能会奇怪明明讨论的是并发编程为什么会扯到了硬件的发展,这其中的关系应该是多核CPU的发展为并发编程提供的硬件基础。

摩尔定律并不是一种自然法则或者是物理定律,它只是基于认为观测数据后,对未来的一种预测。按照所预测的速度,我们的计算能力会按照指数级别的速度增长,不久以后会拥有超强的计算能力,正是在畅想未来的时候,2004年,Intel宣布4GHz芯片的计划推迟到2005年,然后在2004年秋季,Intel宣布彻底取消4GHz的计划,也就是说摩尔定律的有效性超过了半个世纪戛然而止。

但是,聪明的硬件工程师并没有停止研发的脚步,他们为了进一步提升计算速度,而不是再追求单独的计算单元,而是将多个计算单元整合到了一起,也就是形成了多核CPU。短短十几年的时间,家用型CPU,比如Intel i7就可以达到4核心甚至8核心。而专业服务器则通常可以达到几个独立的CPU,每一个CPU甚至拥有多达8个以上的内核。

因此,摩尔定律似乎在CPU核心扩展上继续得到体验。因此,多核的CPU的背景下,催生了并发编程的趋势,通过并发编程的形式可以将多核CPU的计算能力发挥到极致,性能得到提升。

顶级计算机科学家Donald Ervin Knuth如此评价这种情况:在我看来,这种现象(并发)或多或少是由于硬件设计者无计可施了导致的,他们将摩尔定律的责任推给了软件开发者。

另外,在特殊的业务场景下先天的就适合于并发编程。比如在图像处理领域,一张1024X768像素的图片,包含达到78万6千多个像素。即时将所有的像素遍历一边都需要很长的时间,面对如此复杂的计算量就需要充分利用多核的计算的能力。

又比如当我们在网上购物时,为了提升响应速度,需要拆分,减库存,生成订单等等这些操作,就可以进行拆分利用多线程的技术完成。面对复杂业务模型,并行程序会比串行程序更适应业务需求,而并发编程更能吻合这种业务拆分 。正是因为这些优点,使得多线程技术能够得到重视,也是一名CS学习者应该掌握的:

充分利用多核CPU的计算能力;
方便进行业务拆分,提升应用性能

2.并发编程有哪些缺点
多线程技术有这么多的好处,难道就没有一点缺点么,就在任何场景下就一定适用么?很显然不是。

2.1 频繁的上下文切换
时间片是CPU分配给各个线程的时间,因为时间非常短,所以CPU不断通过切换线程,让我们觉得多个线程是同时执行的,时间片一般是几十毫秒。

而每次切换时,需要保存当前的状态起来,以便能够进行恢复先前状态,而这个切换时非常损耗性能,过于频繁反而无法发挥出多线程编程的优势。通常减少上下文切换可以采用无锁并发编程,CAS算法,使用最少的线程和使用协程。

无锁并发编程:可以参照concurrentHashMap锁分段的思想,不同的线程处理不同段的数据,这样在多线程竞争的条件下,可以减少上下文切换的时间。

CAS算法,利用Atomic下使用CAS算法来更新数据,使用了乐观锁,可以有效的减少一部分不必要的锁竞争带来的上下文切换

使用最少线程:避免创建不需要的线程,比如任务很少,但是创建了很多的线程,这样会造成大量的线程都处于等待状态

协程:在单线程里实现多任务的调度,并在单线程里维持多个任务间的切换

由于上下文切换也是个相对比较耗时的操作,所以在"java并发编程的艺术"一书中有过一个实验,并发累加未必会比串行累加速度要快。 可以使用Lmbench3测量上下文切换的时长 vmstat测量上下文切换次数。

2.2 线程安全
多线程编程中最难以把握的就是临界区线程安全问题,稍微不注意就会出现死锁的情况,一旦产生死锁就会造成系统功能不可用。

public class DeadLockDemo {
   private static String resource_a = "A";
   private static String resource_b = "B";

   public static void main(String[] args) {
       deadLock();
   }

   public static void deadLock() {
       Thread threadA = new Thread(new Runnable() {
           @Override
           public void run() {
               synchronized (resource_a) {
                   System.out.println("get resource a");
                   try {
                       Thread.sleep(3000);
                       synchronized (resource_b) {
                           System.out.println("get resource b");
                       }
                   } catch (InterruptedException e) {
                       e.printStackTrace();
                   }
               }
           }
       });
       Thread threadB = new Thread(new Runnable() {
           @Override
           public void run() {
               synchronized (resource_b) {
                   System.out.println("get resource b");
                   synchronized (resource_a) {
                       System.out.println("get resource a");
                   }
               }
           }
       });
       threadA.start();
       threadB.start();

   }
}

在上面的这个demo中,开启了两个线程threadA, threadB,其中threadA占用了resource_a, 并等待被threadB释放的resource _b。threadB占用了resource _b正在等待被threadA释放的resource _a。

因此threadA,threadB出现线程安全的问题,形成死锁。同样可以通过jps,jstack证明这种推论:

"Thread-1":
 waiting to lock monitor 0x000000000b695360 (object 0x00000007d5ff53a8, a java.lang.String),
 which is held by "Thread-0"
"Thread-0":
 waiting to lock monitor 0x000000000b697c10 (object 0x00000007d5ff53d8, a java.lang.String),
 which is held by "Thread-1"

Java stack information for the threads listed above:
===================================================
"Thread-1":
       at learn.DeadLockDemo$2.run(DeadLockDemo.java:34)
       - waiting to lock <0x00000007d5ff53a8(a java.lang.String)
       - locked <0x00000007d5ff53d8(a java.lang.String)
       at java.lang.Thread.run(Thread.java:722)
"Thread-0":
       at learn.DeadLockDemo$1.run(DeadLockDemo.java:20)
       - waiting to lock <0x00000007d5ff53d8(a java.lang.String)
       - locked <0x00000007d5ff53a8(a java.lang.String)
       at java.lang.Thread.run(Thread.java:722)

Found 1 deadlock.

如上所述,完全可以看出当前死锁的情况。

那么,通常可以用如下方式避免死锁的情况:
避免一个线程同时获得多个锁;
避免一个线程在锁内部占有多个资源,尽量保证每个锁只占用一个资源;
尝试使用定时锁,使用lock.tryLock(timeOut),当超时等待时当前线程不会阻塞;
对于数据库锁,加锁和解锁必须在一个数据库连接里,否则会出现解锁失败的情况

所以,如何正确的使用多线程编程技术有很大的学问,比如如何保证线程安全,如何正确理解由于JMM内存模型在原子性,有序性,可见性带来的问题,比如数据脏读,DCL等这些问题(在后续篇幅会讲述)。而在学习多线程编程技术的过程中也会让你收获颇丰。

3.应该了解的概念
3.1 同步VS异步
同步和异步通常用来形容一次方法调用。同步方法调用一开始,调用者必须等待被调用的方法结束后,调用者后面的代码才能执行。而异步调用,指的是,调用者不用管被调用方法是否完成,都会继续执行后面的代码,当被调用的方法完成后会通知调用者。

比如,在超时购物,如果一件物品没了,你得等仓库人员跟你调货,直到仓库人员跟你把货物送过来,你才能继续去收银台付款,这就类似同步调用。而异步调用了,就像网购,你在网上付款下单后,什么事就不用管了,该干嘛就干嘛去了,当货物到达后你收到通知去取就好。

3.2 并发与并行
并发和并行是十分容易混淆的概念。并发指的是多个任务交替进行,而并行则是指真正意义上的“同时进行”。实际上,如果系统内只有一个CPU,而使用多线程时,那么真实系统环境下不能并行,只能通过切换时间片的方式交替进行,而成为并发执行任务。真正的并行也只能出现在拥有多个CPU的系统中。

3.3 阻塞和非阻塞
阻塞和非阻塞通常用来形容多线程间的相互影响,比如一个线程占有了临界区资源,那么其他线程需要这个资源就必须进行等待该资源的释放,会导致等待的线程挂起,这种情况就是阻塞,而非阻塞就恰好相反,它强调没有一个线程可以阻塞其他线程,所有的线程都会尝试地往前运行。

3.4 临界区
临界区用来表示一种公共资源或者说是共享数据,可以被多个线程使用。但是每个线程使用时,一旦临界区资源被一个线程占有,那么其他线程必须等待。

原文发布时间为:2018-05-09
本文作者:Java菜鸟奋斗史
本文来自云栖社区合作伙伴“ Java知音”,了解相关信息可以关注“ Java知音

相关文章
|
6月前
|
Java 编译器 开发者
深入理解Java内存模型(JMM)及其对并发编程的影响
【9月更文挑战第37天】在Java的世界里,内存模型是隐藏在代码背后的守护者,它默默地协调着多线程环境下的数据一致性和可见性问题。本文将揭开Java内存模型的神秘面纱,带领读者探索其对并发编程实践的深远影响。通过深入浅出的方式,我们将了解内存模型的基本概念、工作原理以及如何在实际开发中正确应用这些知识,确保程序的正确性和高效性。
|
9天前
|
消息中间件 算法 安全
JUC并发—1.Java集合包底层源码剖析
本文主要对JDK中的集合包源码进行了剖析。
|
4月前
|
安全 Java 程序员
深入理解Java内存模型与并发编程####
本文旨在探讨Java内存模型(JMM)的复杂性及其对并发编程的影响,不同于传统的摘要形式,本文将以一个实际案例为引子,逐步揭示JMM的核心概念,包括原子性、可见性、有序性,以及这些特性在多线程环境下的具体表现。通过对比分析不同并发工具类的应用,如synchronized、volatile关键字、Lock接口及其实现等,本文将展示如何在实践中有效利用JMM来设计高效且安全的并发程序。最后,还将简要介绍Java 8及更高版本中引入的新特性,如StampedLock,以及它们如何进一步优化多线程编程模型。 ####
72 0
|
5月前
|
缓存 Java 开发者
Java多线程并发编程:同步机制与实践应用
本文深入探讨Java多线程中的同步机制,分析了多线程并发带来的数据不一致等问题,详细介绍了`synchronized`关键字、`ReentrantLock`显式锁及`ReentrantReadWriteLock`读写锁的应用,结合代码示例展示了如何有效解决竞态条件,提升程序性能与稳定性。
618 6
|
5月前
|
设计模式 安全 Java
Java 多线程并发编程
Java多线程并发编程是指在Java程序中使用多个线程同时执行,以提高程序的运行效率和响应速度。通过合理管理和调度线程,可以充分利用多核处理器资源,实现高效的任务处理。本内容将介绍Java多线程的基础概念、实现方式及常见问题解决方法。
259 1
|
5月前
|
存储 安全 Java
Java多线程编程中的并发容器:深入解析与实战应用####
在本文中,我们将探讨Java多线程编程中的一个核心话题——并发容器。不同于传统单一线程环境下的数据结构,并发容器专为多线程场景设计,确保数据访问的线程安全性和高效性。我们将从基础概念出发,逐步深入到`java.util.concurrent`包下的核心并发容器实现,如`ConcurrentHashMap`、`CopyOnWriteArrayList`以及`BlockingQueue`等,通过实例代码演示其使用方法,并分析它们背后的设计原理与适用场景。无论你是Java并发编程的初学者还是希望深化理解的开发者,本文都将为你提供有价值的见解与实践指导。 --- ####
|
5月前
|
存储 设计模式 分布式计算
Java中的多线程编程:并发与并行的深度解析####
在当今软件开发领域,多线程编程已成为提升应用性能、响应速度及资源利用率的关键手段之一。本文将深入探讨Java平台上的多线程机制,从基础概念到高级应用,全面解析并发与并行编程的核心理念、实现方式及其在实际项目中的应用策略。不同于常规摘要的简洁概述,本文旨在通过详尽的技术剖析,为读者构建一个系统化的多线程知识框架,辅以生动实例,让抽象概念具体化,复杂问题简单化。 ####
|
5月前
|
存储 缓存 安全
Java内存模型(JMM):深入理解并发编程的基石####
【10月更文挑战第29天】 本文作为一篇技术性文章,旨在深入探讨Java内存模型(JMM)的核心概念、工作原理及其在并发编程中的应用。我们将从JMM的基本定义出发,逐步剖析其如何通过happens-before原则、volatile关键字、synchronized关键字等机制,解决多线程环境下的数据可见性、原子性和有序性问题。不同于常规摘要的简述方式,本摘要将直接概述文章的核心内容,为读者提供一个清晰的学习路径。 ####
84 2
|
5月前
|
Java 数据库连接 数据库
如何构建高效稳定的Java数据库连接池,涵盖连接池配置、并发控制和异常处理等方面
本文介绍了如何构建高效稳定的Java数据库连接池,涵盖连接池配置、并发控制和异常处理等方面。通过合理配置初始连接数、最大连接数和空闲连接超时时间,确保系统性能和稳定性。文章还探讨了同步阻塞、异步回调和信号量等并发控制策略,并提供了异常处理的最佳实践。最后,给出了一个简单的连接池示例代码,并推荐使用成熟的连接池框架(如HikariCP、C3P0)以简化开发。
136 2
|
6月前
|
Java 开发者
Java多线程初学者指南:介绍通过继承Thread类与实现Runnable接口两种方式创建线程的方法及其优缺点
【10月更文挑战第20天】Java多线程初学者指南:介绍通过继承Thread类与实现Runnable接口两种方式创建线程的方法及其优缺点,重点解析为何实现Runnable接口更具灵活性、资源共享及易于管理的优势。
119 1
下一篇
oss创建bucket