【翻译】Sklearn与TensorFlow机器学习实用指南 —— 附录 C、SVM 对偶问题

简介: Sklearn与TensorFlow机器学习实用指南 —— 附录 C、SVM 对偶问题

为了理解对偶性,你首先得理解拉格朗日乘子法。它基本思想是将一个有约束优化问题转化为一个无约束优化问题,其方法是将约束条件移动到目标函数中去。让我们看一个简单的例子,例如要找到合适的 x 和 y 使得函数 最小化,且其约束条件是一个等式约束。使用拉格朗日乘子法,我们首先定义一个函数,称为拉格朗日函数。每个约束条件(在这个例子中只有一个)与新的变量(称为拉格朗日乘数)相乘,作为原目标函数的减数。
Joseph-Louis Lagrange 大牛证明了如果是原约束优化问题的解,那么一定存在一个,使得是拉格朗日函数的驻点(驻点指的是,在该点处,该函数所有的偏导数均为 0)。换句话说,我们可以计算拉格朗日函数
关于以及的偏导数;然后我们可以找到那些偏导数均为 0 的驻点;最后原约束优化问题的解(如果存在)一定在这些驻点里面。

image

image

image

image

原文发布时间为:2018-07-11
本文作者:ApacheCN【翻译】
本文来自云栖社区合作伙伴“ Python爱好者社区”,了解相关信息可以关注“ Python爱好者社区

相关文章
|
7天前
|
机器学习/深度学习 人工智能 算法
【手写数字识别】Python+深度学习+机器学习+人工智能+TensorFlow+算法模型
手写数字识别系统,使用Python作为主要开发语言,基于深度学习TensorFlow框架,搭建卷积神经网络算法。并通过对数据集进行训练,最后得到一个识别精度较高的模型。并基于Flask框架,开发网页端操作平台,实现用户上传一张图片识别其名称。
24 0
【手写数字识别】Python+深度学习+机器学习+人工智能+TensorFlow+算法模型
|
18天前
|
机器学习/深度学习 TensorFlow API
机器学习实战:TensorFlow在图像识别中的应用探索
【10月更文挑战第28天】随着深度学习技术的发展,图像识别取得了显著进步。TensorFlow作为Google开源的机器学习框架,凭借其强大的功能和灵活的API,在图像识别任务中广泛应用。本文通过实战案例,探讨TensorFlow在图像识别中的优势与挑战,展示如何使用TensorFlow构建和训练卷积神经网络(CNN),并评估模型的性能。尽管面临学习曲线和资源消耗等挑战,TensorFlow仍展现出广阔的应用前景。
46 5
|
1月前
|
机器学习/深度学习 算法 数据可视化
【机器学习】决策树------迅速了解其基本思想,Sklearn的决策树API及构建决策树的步骤!!!
【机器学习】决策树------迅速了解其基本思想,Sklearn的决策树API及构建决策树的步骤!!!
|
3月前
|
机器学习/深度学习 数据采集 算法
机器学习到底是什么?附sklearn代码
机器学习到底是什么?附sklearn代码
|
3月前
|
API UED 开发者
如何在Uno Platform中轻松实现流畅动画效果——从基础到优化,全方位打造用户友好的动态交互体验!
【8月更文挑战第31天】在开发跨平台应用时,确保用户界面流畅且具吸引力至关重要。Uno Platform 作为多端统一的开发框架,不仅支持跨系统应用开发,还能通过优化实现流畅动画,增强用户体验。本文探讨了Uno Platform中实现流畅动画的多个方面,包括动画基础、性能优化、实践技巧及问题排查,帮助开发者掌握具体优化策略,提升应用质量与用户满意度。通过合理利用故事板、减少布局复杂性、使用硬件加速等技术,结合异步方法与预设缓存技巧,开发者能够创建美观且流畅的动画效果。
80 0
|
3月前
|
开发者 算法 虚拟化
惊爆!Uno Platform 调试与性能分析终极攻略,从工具运用到代码优化,带你攻克开发难题成就完美应用
【8月更文挑战第31天】在 Uno Platform 中,调试可通过 Visual Studio 设置断点和逐步执行代码实现,同时浏览器开发者工具有助于 Web 版本调试。性能分析则利用 Visual Studio 的性能分析器检查 CPU 和内存使用情况,还可通过记录时间戳进行简单分析。优化性能涉及代码逻辑优化、资源管理和用户界面简化,综合利用平台提供的工具和技术,确保应用高效稳定运行。
83 0
|
3月前
|
前端开发 开发者 设计模式
揭秘Uno Platform状态管理之道:INotifyPropertyChanged、依赖注入、MVVM大对决,帮你找到最佳策略!
【8月更文挑战第31天】本文对比分析了 Uno Platform 中的关键状态管理策略,包括内置的 INotifyPropertyChanged、依赖注入及 MVVM 框架。INotifyPropertyChanged 方案简单易用,适合小型项目;依赖注入则更灵活,支持状态共享与持久化,适用于复杂场景;MVVM 框架通过分离视图、视图模型和模型,使状态管理更清晰,适合大型项目。开发者可根据项目需求和技术栈选择合适的状态管理方案,以实现高效管理。
44 0
|
3月前
|
机器学习/深度学习 数据采集 算法
如何使用机器学习神器sklearn做特征工程?
如何使用机器学习神器sklearn做特征工程?
|
3月前
|
机器学习/深度学习 算法 TensorFlow
【人工智能】TensorFlow和机器学习概述
TensorFlow的性能优化将是持续的工作重点。这包括更高效的GPU和TPU支持、更快速的模型训练与推理、以及优化的内存使用。同时,随着硬件的发展,TensorFlow将不断优化其代码库以充分利用新型硬件的能力。
26 0
|
3月前
|
机器学习/深度学习 PyTorch TensorFlow
【机器学习】基于tensorflow实现你的第一个DNN网络
【机器学习】基于tensorflow实现你的第一个DNN网络
59 0

热门文章

最新文章