JAVA多线程高并发学习笔记(三)——Callable、Future和FutureTask

简介: 为什么要是用Callable和Future Runnable的局限性 Executor采用Runnable作为基本的表达形式,虽然Runnable的run方法能够写入日志,写入文件,写入数据库等操作,但是它不能返回一个值,或者抛出一个受检查的异常,有些需要返回值的需求就不能满足了。

为什么要是用Callable和Future

Runnable的局限性

Executor采用Runnable作为基本的表达形式,虽然Runnable的run方法能够写入日志,写入文件,写入数据库等操作,但是它不能返回一个值,或者抛出一个受检查的异常,有些需要返回值的需求就不能满足了。

能够取消

Executor中的任务有四个状态:创建,提交,开始和完成。如果说有些任务执行时间比较长,希望能够取消该任务,Executor中的任务在未开始前是可以取消的,如果已经开始了,只能通过中断的方式来取消。如果使用Callable和Future的结合,可以使用Future的canel方法取消任务,这样就方便多了。

 

一个例子:

import java.util.concurrent.*;

public class Demo1 {

    public static void main(String args[]) throws Exception {
        ServiceTask task = new ServiceTask();
        ExecutorService executor = Executors.newCachedThreadPool();
        Future<Integer> result = executor.submit(task);
        executor.shutdown();
        System.out.println("正在执行任务");
        Thread.sleep(1000);
        System.out.println("task运行结果为:" + result.get());
    }
}

class ServiceTask implements Callable<Integer>{
    @Override
    public Integer call() throws Exception {
        Thread.sleep(2000);
        int result = 0;
        // 假设一个很庞大的计算
        for(int i=1;i<100;i++){
            for (int j=0;j<i;j++){
                result +=j;
            }
        }
        return result;
    }
}

看一下执行结果:

这个例子就是一个非常简单的使用Callable和Futute的例子,ServiceTask类实现了Callable接口,并返回一个Integer类型的值。

Future<Integer> result = executor.submit(task);这行代码就是构造一个Future。使用其get()方法就能得到最后的运行值。

 好了看完这一个简单的例子,那就来仔细了解一下它们。

了解Callable和Future

Callable

 来看一下callable的代码:

public abstract interface Callable<V> {
    public abstract V call() throws Exception;
}

可以看出它是接口,提到接口就可以明白接口是灵活的,支持传入泛型参数。这个没什么,我们来重点介绍一下Future

Future

首先来看关于它的介绍
Future提供了检查计算是否完成的方法,以等待计算的完成,并获取计算的结果。计算完成后只能使用 get 方法来获取结果,如有必要,计算完成前可以阻塞此方法。取消则由 cancel 方法来执行。还提供了其他方法,以确定任务是正常完成还是被取消了。

来看一下Future的代码

public abstract interface Future<V> {
    public abstract boolean cancel(boolean paramBoolean);

    public abstract boolean isCancelled();

    public abstract boolean isDone();

    public abstract V get() throws InterruptedException, ExecutionException;

    public abstract V get(long paramLong, TimeUnit paramTimeUnit)
            throws InterruptedException, ExecutionException, TimeoutException;
}

提供了五个方法

 

public abstract boolean cancel(boolean paramBoolean)

试图取消任务的执行(注意是试图),因为存在一些任务已完成、已取消或者因为某些原因无法取消的因素,存在着取消失败的可能性。

当canel方法起作用时,有两个情况:

1.任务未开始,则该任务将永远不会运行;

2.任务处于执行状态,paramBoolean表示是否采用中断的方式中断线程。

 

public abstract boolean isCancelled()

如果任务正常取消的,则返回true。

 

 

public abstract boolean isDone();

如果任务已完成,则返回 true。 可能由于正常终止、异常或取消而完成,在所有这些情况中,此方法都将返回 true。

(注意如果调用isCanle方法,那么isDone将始终返回true).

 

public abstract V get() throws InterruptedException, ExecutionException;

重点到了!这是Future获取计算结果的方式之一,使用get方法。(注意这里返回的是Callable中的泛型)

 get方法取决于任务的状态(未开始,运行中,已完成),如果任务已经完成,那么get会立即返回或者抛出一个异常;

如果任务没有完成,那么get将阻塞知道任务完成。如果任务抛出了异常,那么get会将该异常封装成ExecutionException抛出。

 

public abstract V get(long paramLong, TimeUnit paramTimeUnit)
            throws InterruptedException, ExecutionException, TimeoutException;

如果需要在给定时间后获取计算结果,可以使用这个方法,如果超过给定时间之后没有得到计算结果,则抛出TimeoutException。(注意这里返回的是Callable中的泛型)  

 

如何使用

来看代码:

import java.util.concurrent.*;

public class Demo1 {

    public static void main(String args[]) throws Exception {
        // 1.先实例化任务对象
        ServiceTask task = new ServiceTask();
        // 2.实例化Executor框架中的线程池
        ExecutorService executor = Executors.newCachedThreadPool();
        // 3.使用submit方法将任务提交(返回的是一个Future)
        Future<Integer> result = executor.submit(task);
        // 4.记得关闭线程池
        executor.shutdown();
        System.out.println("正在执行任务");
        Thread.sleep(1000);
        // 5.打印最后的结果
        System.out.println("task运行结果为:" + result.get());
    }
}

/**
 * Callable的实现类
 */
class ServiceTask implements Callable<Integer>{
    @Override
    public Integer call() throws Exception {
        Thread.sleep(2000);
        int result = 0;
        // 假设一个很庞大的计算
        for(int i=1;i<100;i++){
            for (int j=0;j<i;j++){
                result +=j;
            }
        }
        return result;
    }
}

运行结果:

接下来我们来试一下定时取结果:

还是在原来的代码上修改:

import java.util.concurrent.*;

public class Demo1 {

    public static void main(String args[]) throws Exception {
        // 1.先实例化任务对象
        ServiceTask task = new ServiceTask();
        // 2.实例化Executor框架中的线程池
        ExecutorService executor = Executors.newCachedThreadPool();
        // 3.使用submit方法将任务提交(返回的是一个Future)
        Future<Integer> result = executor.submit(task);
        // 4.记得关闭线程池
        executor.shutdown();
        System.out.println("正在执行任务");
        Thread.sleep(1000);
        // 5.设置定时一秒取结果
        System.out.println("task运行结果为:" + result.get(1,TimeUnit.MILLISECONDS));
    }
}

/**
 * Callable的实现类
 */
class ServiceTask implements Callable<Integer>{
    @Override
    public Integer call() throws Exception {
        //这里睡眠2秒
        Thread.sleep(2000);
        int result = 0;
        // 假设一个很庞大的计算
        for(int i=1;i<100;i++){
            for (int j=0;j<i;j++){
                result +=j;
            }
        }
        return result;
    }
}

来提前猜想一下,首先设置了定时一秒之后取得结果,但是ServiceTask设置两秒的睡眠时间,理应取结果失败,看一下运行结果:

是的,如果在规定时间内无法取到结果,就会返回TimeoutException。

 

谈谈FutureTask

FutureTask是Future的实现类,它继承了RunnableFuture,RunnableFuture实际上继承了Runnable和Future接口。

来看一下使用如何FutureTask:

import java.util.concurrent.*;

public class FutureCallDemo2 {

    public static void main(String args[])throws  Exception{
        // 1.先实例化任务对象
        FutureTaskService task = new FutureTaskService();
        // 2.实例化Executor框架中的线程池
        ExecutorService excutor = Executors.newCachedThreadPool();
        // 3.直接new一个FutureTask
        FutureTask<Long> result = new FutureTask<Long>(task);
        // 4.提交任务
        excutor.submit(result);
        // 5.关闭线程池
        excutor.shutdown();
        System.out.println("主线程正在执行任务");
        System.out.println("task运行结果为:" + result.get());
    }
}

/**
 * 继承Callable接口
 */
class FutureTaskService implements Callable<Long> {

    @Override
    public Long call() throws Exception {
        Thread.sleep(3000);
        // 10的阶乘
        long sum = 1;
        for (int i = 1; i <= 10; i++) {
            sum = sum * i;
        }
        return sum;
    }
}

用法的话其实差不多。

 

总结:

Future和Callable可以实现异构任务,但是有很多值得考虑的地方。

比如一个类使用了两个任务,一个负责渲染页面,一个负责下载图像。

伪代码如下:

//通过获取图像
List<ImageData>ImageDataList = future.get();
for(ImageData data:ImageDataList ){
  //渲染页面
  renderPage(data);    
}

看似并行的执行任务,但是却存在着问题。如果说下载图像的速度远小于渲染页面的速度,那么最终的执行速度就和串行无异了。

所以只有当大量相互独立且同构的任务可以进行并发处理时,才能体现出将任务分到多个任务中带来的性能提升,考虑实际情况再选择使用会带来事半功倍的效果。

 

本文参考:

Java并发编程实战

个人博客网站 http://www.janti.cn
相关文章
|
1天前
|
安全 Java
java多线程(一)(火车售票)
java多线程(一)(火车售票)
|
1天前
|
安全 Java 调度
Java并发编程:深入理解线程与锁
【4月更文挑战第18天】本文探讨了Java中的线程和锁机制,包括线程的创建(通过Thread类、Runnable接口或Callable/Future)及其生命周期。Java提供多种锁机制,如`synchronized`关键字、ReentrantLock和ReadWriteLock,以确保并发访问共享资源的安全。此外,文章还介绍了高级并发工具,如Semaphore(控制并发线程数)、CountDownLatch(线程间等待)和CyclicBarrier(同步多个线程)。掌握这些知识对于编写高效、正确的并发程序至关重要。
|
1天前
|
安全 Java 程序员
Java中的多线程并发编程实践
【4月更文挑战第18天】在现代软件开发中,为了提高程序性能和响应速度,经常需要利用多线程技术来实现并发执行。本文将深入探讨Java语言中的多线程机制,包括线程的创建、启动、同步以及线程池的使用等关键技术点。我们将通过具体代码实例,分析多线程编程的优势与挑战,并提出一系列优化策略来确保多线程环境下的程序稳定性和性能。
|
2天前
|
缓存 分布式计算 监控
Java并发编程:深入理解线程池
【4月更文挑战第17天】在Java并发编程中,线程池是一种非常重要的技术,它可以有效地管理和控制线程的执行,提高系统的性能和稳定性。本文将深入探讨Java线程池的工作原理,使用方法以及在实际开发中的应用场景,帮助读者更好地理解和使用Java线程池。
|
2天前
|
存储 安全 Java
Java中的容器,线程安全和线程不安全
Java中的容器,线程安全和线程不安全
10 1
Java 基于Callable接口的线程实例
本文目录 1. 背景 2. 代码实现 3. 解析
102 0
|
10天前
|
存储 Java 数据库连接
java多线程之线程通信
java多线程之线程通信
|
10天前
|
算法 Java 开发者
Java中的多线程编程:概念、实现与性能优化
【4月更文挑战第9天】在Java编程中,多线程是一种强大的工具,它允许开发者创建并发执行的程序,提高系统的响应性和吞吐量。本文将深入探讨Java多线程的核心概念,包括线程的生命周期、线程同步机制以及线程池的使用。接着,我们将展示如何通过继承Thread类和实现Runnable接口来创建线程,并讨论各自的优缺点。此外,文章还将介绍高级主题,如死锁的预防、避免和检测,以及如何使用并发集合和原子变量来提高多线程程序的性能和安全性。最后,我们将提供一些实用的性能优化技巧,帮助开发者编写出更高效、更稳定的多线程应用程序。
|
8天前
|
安全 算法 Java
深入理解Java并发编程:线程安全与性能优化
【4月更文挑战第11天】 在Java中,高效的并发编程是提升应用性能和响应能力的关键。本文将探讨Java并发的核心概念,包括线程安全、锁机制、线程池以及并发集合等,同时提供实用的编程技巧和最佳实践,帮助开发者在保证线程安全的前提下,优化程序性能。我们将通过分析常见的并发问题,如竞态条件、死锁,以及如何利用现代Java并发工具来避免这些问题,从而构建更加健壮和高效的多线程应用程序。
|
2天前
|
Java 开发者
Java中多线程并发控制的实现与优化
【4月更文挑战第17天】 在现代软件开发中,多线程编程已成为提升应用性能和响应能力的关键手段。特别是在Java语言中,由于其平台无关性和强大的运行时环境,多线程技术的应用尤为广泛。本文将深入探讨Java多线程的并发控制机制,包括基本的同步方法、死锁问题以及高级并发工具如java.util.concurrent包的使用。通过分析多线程环境下的竞态条件、资源争夺和线程协调问题,我们提出了一系列实现和优化策略,旨在帮助开发者构建更加健壮、高效的多线程应用。
3 0