最大期望算法 Expectation Maximization概念

简介: 在统计计算中,最大期望(EM,Expectation–Maximization)算法是在概率(probabilistic)模型中寻找参数最大似然估计的算法,其中概率模型依赖于无法观测的隐藏变量(Latent Variabl)。

在统计计算中,最大期望(EM,Expectation–Maximization)算法是在概率(probabilistic)模型中寻找参数最大似然估计的算法,其中概率模型依赖于无法观测的隐藏变量(Latent Variabl)。最大期望经常用在机器学习和计算机视觉的数据集聚(Data Clustering)领域。

可以有一些比较形象的比喻说法把这个算法讲清楚。比如说食堂的大师傅炒了一份菜,要等分成两份给两个人吃,显然没有必要拿来天平一点一点的精确的去称分量,最简单的办法是先随意的把菜分到两个碗中,然后观察是否一样多,把比较多的那一份取出一点放到另一个碗中,这个过程一直迭代地执行下去,直到大家看不出两个碗所容纳的菜有什么分量上的不同为止。EM算法就是这样,假设我们估计知道A和B两个参数,在开始状态下二者都是未知的,并且知道了A的信息就可以得到B的信息,反过来知道了B也就得到了A。可以考虑首先赋予A某种初值,以此得到B的估计值,然后从B的当前值出发,重新估计A的取值,这个过程一直持续到收敛为止。
EM 算法是 Dempster,Laind,Rubin 于 1977 年提出的求参数极大似然估计的一种方法,它可以从非完整数据集中对参数进行 MLE 估计,是一种非常简单实用的学习算法。这种方法可以广泛地应用于处理缺损数据,割尾数据,带有噪声等所谓的不完全数据(incomplete data)。
假定集合Z = (X,Y)由观测数据 X 和未观测数据Y 组成,X 和Z = (X,Y)分别称为不完整数据和完整数据。假设Z的联合概率密度被参数化地定义为P(X,Y|Θ),其中Θ表示要被估计的参数。Θ的最大似然估计是求不完整数据的对数依然函数L(X;Θ)的最大值而得到的:
L(Θ;X)= log p(X|Θ) = ∫log p(X,Y|Θ)dY ;
EM算法包括两个步骤:由E步和M步组成,它是通过迭代地最大化完整数据的对数似然函数Lc(X;Θ)的期望来最大化不完整数据的对数似然函数,其中:
Lc(X;Θ) =log p(X,Y |Θ) ;
假设在算法第t次迭代后Θ获得的估计记为Θ(t) ,则在(t+1)次迭代时,
E-步:计算完整数据的对数似然函数的期望,记为:
Q(Θ|Θ (t)) = E{Lc(Θ;Z)|X;Θ(t)};
M-步:通过最大化Q(Θ|Θ(t) ) 来获得新的Θ 。
通过交替使用这两个步骤,EM算法逐步改进模型的参数,使参数和训练样本的似然概率逐渐增大,最后终止于一个极大点。直观地理解EM算法,它也可被看作为一个逐次逼近算法:事先并不知道模型的参数,可以随机的选择一套参数或者事先粗略地给定某个初始参数λ0 ,确定出对应于这组参数的最可能的状态,计算每个训练样本的可能结果的概率,在当前的状态下再由样本对参数修正,重新估计参数λ,并在新的参数下重新确定模型的状态,这样,通过多次的迭代,循环直至某个收敛条件满足为止,就可以使得模型的参数逐渐逼近真实参数。
EM算法的主要目的是提供一个简单的迭代算法计算后验密度函数,它的最大优点是简单和稳定,但容易陷入局部最优。
 
 
目录
相关文章
|
4月前
|
机器学习/深度学习 算法 数据可视化
近端策略优化算法PPO的核心概念和PyTorch实现详解
本文深入解析了近端策略优化(PPO)算法的核心原理,并基于PyTorch框架实现了完整的强化学习训练流程。通过Lunar Lander环境展示了算法的全过程,涵盖环境交互、优势函数计算、策略更新等关键模块。内容理论与实践结合,适合希望掌握PPO算法及其实现的读者。
622 2
近端策略优化算法PPO的核心概念和PyTorch实现详解
|
5月前
|
算法 数据可视化 数据挖掘
基于EM期望最大化算法的GMM参数估计与三维数据分类系统python源码
本内容展示了基于EM算法的高斯混合模型(GMM)聚类实现,包含完整Python代码、运行效果图及理论解析。程序使用三维数据进行演示,涵盖误差计算、模型参数更新、结果可视化等关键步骤,并附有详细注释与操作视频,适合学习EM算法与GMM模型的原理及应用。
|
存储 算法
数据结构与算法学习二二:图的学习、图的概念、图的深度和广度优先遍历
这篇文章详细介绍了图的概念、表示方式以及深度优先遍历和广度优先遍历的算法实现。
257 1
数据结构与算法学习二二:图的学习、图的概念、图的深度和广度优先遍历
|
存储 算法 Linux
【数据结构和算法】---二叉树(1)--树概念及结构
【数据结构和算法】---二叉树(1)--树概念及结构
177 0
|
机器学习/深度学习 算法 数据挖掘
使用C# 实现期望最大化算法
使用C# 实现期望最大化算法
169 0
|
机器学习/深度学习 算法
【机器学习】解释对偶的概念及SVM中的对偶算法?(面试回答)
解释了对偶的概念,指出对偶性在优化问题中的重要性,尤其是在强对偶性成立时可以提供主问题的最优下界,并且详细阐述了支持向量机(SVM)中对偶算法的应用,包括如何将原始的最大间隔优化问题转换为对偶问题来求解。
405 2
|
机器学习/深度学习 人工智能 自然语言处理
机器学习之深度学习算法概念
深度学习算法是一类基于人工神经网络的机器学习方法,其核心思想是通过多层次的非线性变换,从数据中学习表示层次特征,从而实现对复杂模式的建模和学习。深度学习算法在图像识别、语音识别、自然语言处理等领域取得了巨大的成功,成为人工智能领域的重要技术之一。
310 3
|
存储 算法 C语言
二分查找算法的概念、原理、效率以及使用C语言循环和数组的简单实现
二分查找算法的概念、原理、效率以及使用C语言循环和数组的简单实现
|
机器学习/深度学习 算法 C语言
详细介绍递归算法在 C 语言中的应用,包括递归的基本概念、特点、实现方法以及实际应用案例
【6月更文挑战第15天】递归算法在C语言中是强大力量的体现,通过函数调用自身解决复杂问题。递归涉及基本概念如自调用、终止条件及栈空间管理。在C中实现递归需定义递归函数,分解问题并设定停止条件。阶乘和斐波那契数列是经典应用示例,展示了递归的优雅与效率。然而,递归可能导致栈溢出,需注意优化。学习递归深化了对“分而治之”策略的理解。**
390 7
基于EM期望最大化算法的GMM模型参数估计matlab仿真
此程序在MATLAB 2022a中实现了基于EM算法的GMM参数估计,用于分析由多个高斯分布组成的混合数据。程序通过迭代优化各高斯组件的权重、均值与协方差,直至收敛,并输出迭代过程的收敛曲线及最终参数估计结果。GMM假设数据由K个高斯分布混合而成,EM算法通过E步计算样本归属概率,M步更新参数,循环迭代直至收敛。

热门文章

最新文章