MaxCompute5个窗口函数限制

本文涉及的产品
云原生大数据计算服务 MaxCompute,5000CU*H 100GB 3个月
云原生大数据计算服务MaxCompute,500CU*H 100GB 3个月
简介: MaxCompute使用技巧

场景:想选出每个客户前10个top购买类目,再pivot成10个列(或者合并成逗号隔开的一个值)

遭遇: “maximum 5 window functions allowed in the select statement of a sql ”

反了一下MaxCompute使用文档

  • 一个SELECT中最多允许5个窗口函数

记得有篇文章,绕过了这个限制,好像是用union之类,找不到了。

好吧,自己决定按unique key,把表查询两遍(各自配5个window function,一个管1-5,另一个表管6-10),再join回来,这样可以多一倍函数。

分享给着急用的人,也期待官方有更好的支持方式;

文章转载自xueyuan

欢迎加入“数加·MaxCompute购买咨询”钉钉群(群号: 11782920)进行咨询,群二维码如下:

96e17df884ab556dc002c912fa736ef6558cbb51
相关实践学习
基于MaxCompute的热门话题分析
本实验围绕社交用户发布的文章做了详尽的分析,通过分析能得到用户群体年龄分布,性别分布,地理位置分布,以及热门话题的热度。
SaaS 模式云数据仓库必修课
本课程由阿里云开发者社区和阿里云大数据团队共同出品,是SaaS模式云原生数据仓库领导者MaxCompute核心课程。本课程由阿里云资深产品和技术专家们从概念到方法,从场景到实践,体系化的将阿里巴巴飞天大数据平台10多年的经过验证的方法与实践深入浅出的讲给开发者们。帮助大数据开发者快速了解并掌握SaaS模式的云原生的数据仓库,助力开发者学习了解先进的技术栈,并能在实际业务中敏捷的进行大数据分析,赋能企业业务。 通过本课程可以了解SaaS模式云原生数据仓库领导者MaxCompute核心功能及典型适用场景,可应用MaxCompute实现数仓搭建,快速进行大数据分析。适合大数据工程师、大数据分析师 大量数据需要处理、存储和管理,需要搭建数据仓库?学它! 没有足够人员和经验来运维大数据平台,不想自建IDC买机器,需要免运维的大数据平台?会SQL就等于会大数据?学它! 想知道大数据用得对不对,想用更少的钱得到持续演进的数仓能力?获得极致弹性的计算资源和更好的性能,以及持续保护数据安全的生产环境?学它! 想要获得灵活的分析能力,快速洞察数据规律特征?想要兼得数据湖的灵活性与数据仓库的成长性?学它! 出品人:阿里云大数据产品及研发团队专家 产品 MaxCompute 官网 https://www.aliyun.com/product/odps 
目录
相关文章
|
SQL 大数据 开发工具
大数据Hive窗口函数应用实例 2
大数据Hive窗口函数应用实例
160 0
|
SQL 大数据 开发工具
大数据Hive窗口函数应用实例 1
大数据Hive窗口函数应用实例
97 0
|
移动开发 分布式计算 大数据
阿里云大数据利器Maxcompute学习之--窗口函数实现分组TopN
看到很多用户经常会问如何对分组内进行排序。官方文档:https://help.aliyun.com/document_detail/34994.html?spm=5176.doc27891.6.611.
7006 0
|
SQL JavaScript 大数据
阿里云大数据ACP认证知识点梳理6——基础SQL语句(内建函数、窗口函数规则、隐式转换规则)
内建函数使用规则、窗口函数使用使用规则、隐式转换规则
1732 0
|
2月前
|
存储 机器学习/深度学习 分布式计算
大数据技术——解锁数据的力量,引领未来趋势
【10月更文挑战第5天】大数据技术——解锁数据的力量,引领未来趋势
|
24天前
|
存储 分布式计算 数据挖掘
数据架构 ODPS 是什么?
数据架构 ODPS 是什么?
196 7
|
24天前
|
存储 分布式计算 大数据
大数据 优化数据读取
【11月更文挑战第4天】
39 2
|
1月前
|
数据采集 监控 数据管理
数据治理之道:大数据平台的搭建与数据质量管理
【10月更文挑战第26天】随着信息技术的发展,数据成为企业核心资源。本文探讨大数据平台的搭建与数据质量管理,包括选择合适架构、数据处理与分析能力、数据质量标准与监控机制、数据清洗与校验及元数据管理,为企业数据治理提供参考。
78 1
|
15天前
|
机器学习/深度学习 存储 大数据
在大数据时代,高维数据处理成为难题,主成分分析(PCA)作为一种有效的数据降维技术,通过线性变换将数据投影到新的坐标系
在大数据时代,高维数据处理成为难题,主成分分析(PCA)作为一种有效的数据降维技术,通过线性变换将数据投影到新的坐标系,保留最大方差信息,实现数据压缩、去噪及可视化。本文详解PCA原理、步骤及其Python实现,探讨其在图像压缩、特征提取等领域的应用,并指出使用时的注意事项,旨在帮助读者掌握这一强大工具。
32 4
|
21天前
|
存储 大数据 数据管理
大数据分区简化数据维护
大数据分区简化数据维护
24 4

相关产品

  • 云原生大数据计算服务 MaxCompute