表面瑕疵检测中的机器视觉技术应用

简介:

表面瑕疵检测仪凝聚了机器视觉领域的多项先进技术应用,并融入了多项创新的检测理念,既可以和现有生产线无缝对接实时在线检测,也可以离线进行检测,在对材料表面的瑕疵以及半透明材料内部瑕疵进行快速检测的同时能够直观的给予生产数据报告反馈,检测精确、稳定、快速、可大幅度提高生产的柔性及自动化程度以提高生产效率,且易于实现信息集成。工业智能相机
在当前大批量工业自动生产过程中,用人工检查产品质量效率过低且精度不高;和其他一些人工视觉检测难以满足要求的场合,表面瑕疵检测仪正在迅速取代人工视觉检测。事实上,也正因如此,在世界上现代自动化生产过程中表面瑕疵检测系统已广泛应用于带钢、薄膜、金属、纸张、无纺布、玻璃等领域。
工业智能相机
机器视觉就是用机器代替人眼来做测量和判断,视觉系统的输出并非图像视频信号,而是经过运算处理之后的检测结果(如缺陷、尺寸等数据)。系统采用CCD相机将被摄取目标转换成图像信号,传送给专用的图像处理系统,根据像素分布和亮度、颜色等信息,转变成数字化信号。图像系统对 这些信号进行各种运算来抽取目标的特征,如:面积、长度、数量、位置等。最后,根据预设的容许度和其他条件输出结果,如:缺陷、尺寸、角度、偏移量、个数、合格 /不合格、有/无等。上位机(如PC和PLC)实时获得检测结果后,指挥运动系统或I/O系统执行相应的控制动作(如定位和分类)。
机器视觉检测
朗锐智科(www.loongv.com)表面瑕疵检测主要技术指标:
1、测量精度:0.1mm以上的斑点、污点、孔洞等瑕疵;
2、适用宽度:按要求定制;
3、CCD数量:依被测物宽度及检测精度决定;
4、检测常见的瑕疵,对瑕疵缺陷信息进行处理,实时提供瑕疵的位置、大小,以及记录供用户参考核对;
5、系统可设置瑕疵报警的参数,用户可根据生产要求设置报警线,实现声光报警并对不合格位置在线做标记。
工业产品的表面瑕疵严重影响着产品本身的质量,如何避免表面瑕疵进行质量控制一直是生产企业面临的最大问题,传统的人工检测费用昂贵、检测人员容易疲劳以及容易瑕疵漏检等弊端,已经难以适应高速的生产系统,表面视觉检测在工业中的应用为表面瑕疵检测提供的新的解决方案。

相关文章
|
7月前
|
机器学习/深度学习 编解码 API
深度学习+不良身体姿势检测+警报系统+代码+部署(姿态识别矫正系统)
深度学习+不良身体姿势检测+警报系统+代码+部署(姿态识别矫正系统)
|
7月前
|
传感器 编解码 监控
LabVIEW基于机器视觉的钢轨表面缺陷检测系统
LabVIEW基于机器视觉的钢轨表面缺陷检测系统
97 3
|
7月前
|
机器学习/深度学习 算法 前端开发
高速公路表面图像裂缝检测程序
高速公路表面图像裂缝检测程序
|
监控 安全 异构计算
头盔佩戴检测(行人跟踪技术检测)
头盔佩戴检测(行人跟踪技术检测)
头盔佩戴检测(行人跟踪技术检测)
|
传感器 机器学习/深度学习 人工智能
一文尽览 | 全景/鱼眼相机低速自动驾驶的近距离感知(识别+重建+定位+工程化)(上)
本文的工作部分受到了Malik等人在[5]中的工作的启发。这项工作的作者提出,计算机视觉的核心问题是重建、识别和重组,他们称之为计算机视觉的3R。在此,论文建议将计算机视觉的3R扩展并专门化为自动驾驶计算机视觉的4R:重建、识别、重组和重新定位。
一文尽览 | 全景/鱼眼相机低速自动驾驶的近距离感知(识别+重建+定位+工程化)(上)
|
机器学习/深度学习 传感器 存储
一文尽览 | 全景/鱼眼相机低速自动驾驶的近距离感知(识别+重建+定位+工程化)(下)
本文的工作部分受到了Malik等人在[5]中的工作的启发。这项工作的作者提出,计算机视觉的核心问题是重建、识别和重组,他们称之为计算机视觉的3R。在此,论文建议将计算机视觉的3R扩展并专门化为自动驾驶计算机视觉的4R:重建、识别、重组和重新定位。
一文尽览 | 全景/鱼眼相机低速自动驾驶的近距离感知(识别+重建+定位+工程化)(下)
|
编解码 人工智能 算法
2022最新!更面向工业场景:基于视觉方案不同挑战下的车道检测与跟踪(下)
本文作者提出了一种鲁棒的车道检测和跟踪方法来检测车道线,该方法主要介绍了三个关键技术。首先,应用双边滤波器来平滑和保留边缘,引入了一个优化的强度阈值范围(OITR)来提高canny算子的性能,该算子检测低强度(有色、腐蚀或模糊)车道标记的边缘。第二,提出了一种稳健的车道验证技术,即基于角度和长度的几何约束(ALGC)算法,然后进行霍夫变换,以验证车道线的特征并防止不正确的车道线检测。最后,提出了一种新的车道线跟踪技术,即水平可调车道重新定位范围(HALRR)算法,该算法可以在左、右或两条车道标记在短时间内部分和完全不可见时跟踪车道位置。
2022最新!更面向工业场景:基于视觉方案不同挑战下的车道检测与跟踪(下)
|
传感器 编解码 人工智能
2022最新!更面向工业场景:基于视觉方案不同挑战下的车道检测与跟踪(上)
本文作者提出了一种鲁棒的车道检测和跟踪方法来检测车道线,该方法主要介绍了三个关键技术。首先,应用双边滤波器来平滑和保留边缘,引入了一个优化的强度阈值范围(OITR)来提高canny算子的性能,该算子检测低强度(有色、腐蚀或模糊)车道标记的边缘。第二,提出了一种稳健的车道验证技术,即基于角度和长度的几何约束(ALGC)算法,然后进行霍夫变换,以验证车道线的特征并防止不正确的车道线检测。最后,提出了一种新的车道线跟踪技术,即水平可调车道重新定位范围(HALRR)算法,该算法可以在左、右或两条车道标记在短时间内部分和完全不可见时跟踪车道位置。
2022最新!更面向工业场景:基于视觉方案不同挑战下的车道检测与跟踪(上)
|
机器学习/深度学习 算法 数据挖掘
【图像检测-道路检测】基于hough变换实现道路检测直线检测附matlab代码
【图像检测-道路检测】基于hough变换实现道路检测直线检测附matlab代码
|
编解码 Serverless vr&ar
工业视觉中如何定量分析镜头光学性能
工业视觉中如何定量分析镜头光学性能
385 0
工业视觉中如何定量分析镜头光学性能