技术前沿:分布式缓存Redis Cluster在华泰证券的探索与实践

简介:

Redis Cluster作为最热门的开源分布式缓存,在券商领域会有怎样的应用场景?本文从华泰证券的应用现状出发,介绍了Redis Cluster在华泰证券的大规模实践经验。

引言
Redis 是一个开源(BSD许可)的内存 Key-Value 存储系统,它可以用作数据库、缓存和消息中间件。它支持多种类型的数据结构,如:字符串、散列、列表、集合、有序集合与范围查询等。 Redis 内置了复制、LRU 驱动事件、事务、磁盘持久化等特性,并通过Redis哨兵(主从模式)和自动分区(Redis Cluster模式)提供高可用性。

官方的Redis Cluster推出前,常见的Redis Cluster开源方案主要是Codis和Twemproxy,两者均采用Proxy的方式实现分布式。通过引入Proxy层来屏蔽底层数据的分布,可以简化客户端的实现,但使得集群架构变得复杂,维护成本上升。
Redis从3.0开始支持自动分区,采用无中心节点方式实现Cluster模式。访问Redis Cluster时,无需Proxy代理,具备Smart特性的客户端直接与Redis Cluster中的每个节点连接。

Redis 引入 Cluster 模式带来的优势在于:
1.可靠性:具有分区机制、副本机制和自动容错机制;
2.高性能:保证了 Redis 高吞吐的前提下,可线性扩展到上千个节点;
3.可扩展性:基于分区的自动扩容、缩容,客户端透明的数据迁移。

目前,Redis 在互联网、金融、传统行业内的应用已十分广泛。随着金融业接入互联网的业务增加,活动、促销、节假日、热门事件等可能带来突发数倍甚至几十倍的访问峰值的情况时有发生,Redis Cluster 是抵御突发海量访问的有效手段。
基本原理及概念
Redis Cluster 整体设计是比较简单的,集群架构采用无中心节点的方式实现,集群中的节点通过Gossip协议相互交换集群状态。客户端无需代理直接访问服务端,客户端通过Hash算法计算出Key对应的哈希槽,然后直接访问哈希槽对应的服务端节点。

Redis Cluster 的拓扑结构如下图所示:

image


图1 Redis Cluster架构图


集群构建:
Redis Cluster提供了一组集群搭建和管理命令,如:CLUSTER INFO、CLUSTER NODES、CLUSTER MEET等。实际使用过程中可以借助命令行工具redis-trib.rb,可以方便的搭建一个集群、平衡集群哈希槽分布、删除添加节点等。

搭建一个Redis Cluster仅需两步:
1.节点准备,将编译好的Redis发布到至少三台服务器上,修改配置文件并启动Redis节点;
2.节点握手,使用redis-tribcreate host1:port1 … hostN:portN命令完成节点握手并确认槽位分配。

服务器上有多个Redis实例时,注意修改服务的端口、工作目录、AOF和RDB文件名等配置。创建集群时可以指定副本数,也可以在集群创建完成后,将从节点逐个添加到集群中去。

数据分布:
Redis Cluster基于哈希槽(分片)的方式将数据分布到16384个槽中,每个Master节点负责一部分哈希槽的数据存储。Redis中的每个键都会被映射到这些哈希槽的其中一个,集群使用Hash公式CRC16(key)%16384来计算键key属于哪个槽。

Redis的Smart客户端在访问集群时,先获取并缓存哈希槽和节点的映射关系,然后通过计算Key对应的哈希槽编号查找应该访问的节点。为了配合集群扩缩容、数据迁移等哈希槽映射需要改变的操作,Redis服务端添加了MOVED、ASK两种响应策略,前者通知客户端所访问的哈希槽所在的新节点,后者则通知客户端哈希槽正在迁移到哪个节点。

主从复制:
Redis Cluster 节点间使用异步冗余备份(Asynchronous Replication),不能保证数据的强一致性。可能出现数据丢失的场景:修改操作完成主节点上更新,当主节点回复客户端成功后,增量改动未能同步到从节点,此时主节点异常(宕机、故障转移等),从节点成为主节点;客户端路由表更新窗口期间,集群内或许会有主从角色快速出现两次切换,此时数据仍有可能写错节点,最终造成数据丢失。

虽然Redis主从复制不能保证强一致性,但在不出现主从切换的情况下,数据出现不一致的情况还是很难出现的。实际生产环境下,出现主从切换的概率不大,但仍建议业务系统要有容忍缓存数据丢失的能力。

故障检测:
Redis Cluster 中的每个节点都存储有一份其他已知节点的标识列表,其中有两个标识是用于失效检测,分别是 PFAIL 和 FAIL。当一个节点在超过NODE_TIMEOUT时间后仍无法访问某个节点,他会将被检测节点标识为PFAIL,表示可能失效;一个节点被大多数主节点确认不可达,则会标识为FAIL,表示已经失效。

每个节点定时向其他节点发送Gossip消息,消息中包含一些随机的已知节点的状态。最终每个节点都能收到一份其他节点的标识。当节点被标记为FAIL时,就需要提升一个从节点来做主节点。

故障转移:
当一个负责槽位数大于0的主节点处于FAIL状态时,他的从节点可以自动的发起选举。一旦某个从节点收到了大多数主节点的回应,那么它将提升为新的主节点。另外,Redis Cluster提供了手动故障迁移的命令CLUSTER FAILOVER,可以在运维使用。
Redis Cluster 在华泰证券背景介绍及建设现状

2015年,随着华泰证券互联网金融自主研发的大规模投入,面对海量用户并发场景,迫切需要建设统一化、服务化的分布式缓存平台。

通过对Redis Cluster、Codis及Twemproxy等开源Redis集群解决方案进行验证和对比,最终从性能、易维护、高可用等方面考虑,选择Redis 3.2.0版本的Cluster模式作为公司级缓存解决方案。Redis Cluster获得了开源社区的持续支持,功能、特性一直在迭代改进。相比之下,Codis及Twemproxy社区活跃度较低,维护成本相对较高,吞吐量也略逊于Redis Cluster。

目前,在华泰证券建设有多套 Redis Cluster 资源池,总体集群服务器数量20余台。在交易时段,峰值访问量超 20万次/秒,服务了30个以上应用系统,包括:行情中心、涨乐财富通、互联网用户中心等,在缓存、分布式锁、内存存储、任务队列等业务场景都有应用。

实践经验
(1)高可用多活架构
如图2所示,Redis Cluster数据节点采用同城三数据中心部署方式,通常其中两个数据中心部署数量相等的机器,另一数据中心部署单台机器。为加速重做从节点的速度,主机采用万兆网卡。为保证访问缓存的延时足够小,跨数据中心之间的网络通信采用独立的万兆波分通道。

image

图2 Redis Cluster部署架构图

实际部署时,需要调整 Redis Cluster的Master 节点分布,要保证任意一个数据中心 Master 节点数小于集群的一半。采取这样的部署架构,如果单数据中心出现问题,另一个中心能自动进行接管,业务系统可以无感知切换。
(2)Java客户端层面的调优
1、推荐使用Jedis2.8.x及以上版本,关闭TestOnReturn和TestOnBorrow;
2、推荐使用Jedis的JedisPoolConfig,它是对GenericObjectPoolConfig的优化版本;
3、合理使用HGETALL、SMEMBERS等O(N)操作。
(3)服务端层面的优化
1、重命名KEYS、FLUSHALL、FLUSHDB等耗时且危险的操作;
2、适度加大client-output-buffer-limitslave避免不必要的重做从节点;
3、适度加大repl-backlog-size和repl-backlog-ttl,值越大slave可丢失的时间越长;
4、AOF,关闭RDB,减少服务端fork操作造成的访问出现卡顿的现象;
5、根据实际场景配置cluster-require-full-coverage为yes,减少集群不可用的时间。
(4)Redis Cluster的功能限制
Redis cluster是分布式的Redis实现,具有一定的容错性和线性可扩展性,这些特性牺牲了以下功能:
1、不能使用SELECT命令,不支持对多个槽位内的KEY进行操作,比如MSET、SUNION;
2、发布订阅功能不推荐使用,集群规模越大,产生的网络流量越大;
3、采用Redis主从模式的应用,客户端代码需要少量的改造才能升级到Cluster模式。
(5)问题跟进及版本更新
开源中间件难免出现Bug及其它性能问题,大部分问题开源社区都能找到问题的解决方案,积极的跟进社区讨论是有效的避免生产事故的有效途径。在实际使用中,我们发现了多个Redis的Bug,社区均有解决方案。

目前,我们已经将生产环境上部分Redis节点升级到3.2.7版本,主要因为遇到以下问题:
1、从节点同步Ziplist后,List索引更新错误,造成从节点Crash;
2、Ziplist中成员长度增长,List索引更新错误,造成主节点和从节点的AOF重写均失败,产生大量临时文件。
(6)持续跟进
Redis 2.8.0版本开始引入 PSYNC 机制,PSYNC通过添加缓冲队列,缓存从节点断开连接期间的数据变化增量,当从节点重新连接且缓存队列未溢出时,则可避免早期版本从节点重连后必然需要SYNC操作全量同步主节点数据的问题。

PSYNC可以有效地解决网络抖动造成的从节点短暂断开连接的问题,但无法避免当主节点、从节点相继出现网络失连、重启、进程推出的情况发生后的全量数据同步和恢复,Redis 4.0引入PSYNC 2和PSYNC 3等新特性来解决相关问题。目前Redis 4.0仍处于验证阶段,需要持续验证和密切关注。

典型场景

与其它开源的 key-value 内存存储系统相比,Redis支持的数据更加丰富,常用的value数据类型包括:字符串、哈希表、链表、集合、有序集合。同时,Redis还内置了这些数据结构的常见操作。目前,Redis的应用已经非常广泛,常见的使用场景包括:缓存热数据、计数器、队列、分布式锁、排行榜、新闻列表、评论等场景。Redis Cluster 在华泰证券的新建信息系统中也得到了广泛的应用,使用的部分场景举例如下:

行情截面

某些应用场景可能需要获取某个市场或多个股票的最新行情,可以使用Redis的Hash结构来实现这个需求。示例代码如下:
添加或更新一只股票的行情
HSETMD:XSHG:STOCKTYPE “601688.SH” 17.88
获取多只股票最新行情
HMGET MD:XSHG:STOCKTYPE “601688.SH” “601689.SH”
获取某个交易所所以股票最新行情,HGETALL操作为O(N)操作,不建议频繁调用
HGETALL MD:XSHG:STOCKTYPE
K线
常见的K线为日K线或分钟K线,以日K线为例,可以使用Redis的有序集合来实现,示例代码如下:
添加某只股票2018年3月1的K线
ZADD KLINE:1DAY:601688.SH 20180301 kline_value
获取某只股票多天的K线
ZRANGEBYSCORE KLINE:1DAY:601688.SH 20180301 20180302

任务队列

任务队列用来在任务的生产者和消费者之间传递任务,实现任务的产生和任务执行模块间的松耦合。实例代码如下:
生产者生成一个任务task01
RPUSH TASK:QUEUE “task01”
消费者堵塞等待100秒等待任务,BLPOP是LPOP的堵塞版本
BLPOP TASK:QUEUE 100

未来规划

随着业务的不断发展,Redis Cluster 在华泰证券内部已成为核心组件。未来重点进行 PaaS 平台建设,加强集群自动化灾备;建立分级保障制度,对重点业务进行独立管理。目前,Redis 的最新版本 4.0.x 解决了 Redis 3.2.x 版本在面对网络剧烈抖动时,偶尔会出现部分分片所在的主从节点均不可用的情况。

尽早验证Redis 4.0.x版本的稳定性,制定有效的升级方案和计划,也将是未来工作的重点之一。

原文发布时间为:2018-07-03
本文作者:樊建 陈营 葛宝磊
本文来自云栖社区合作伙伴“数据和云”,了解相关信息可以关注“数据和云”。

相关文章
|
2月前
|
人工智能 安全 Java
分布式 Multi Agent 安全高可用探索与实践
在人工智能加速发展的今天,AI Agent 正在成为推动“人工智能+”战略落地的核心引擎。无论是技术趋势还是政策导向,都预示着一场深刻的变革正在发生。如果你也在探索 Agent 的应用场景,欢迎关注 AgentScope 项目,或尝试使用阿里云 MSE + Higress + Nacos 构建属于你的 AI 原生应用。一起,走进智能体的新世界。
648 47
|
2月前
|
负载均衡 测试技术 调度
大模型分布式推理:张量并行与流水线并行技术
本文深入探讨大语言模型分布式推理的核心技术——张量并行与流水线并行。通过分析单GPU内存限制下的模型部署挑战,详细解析张量并行的矩阵分片策略、流水线并行的阶段划分机制,以及二者的混合并行架构。文章包含完整的分布式推理框架实现、通信优化策略和性能调优指南,为千亿参数大模型的分布式部署提供全面解决方案。
599 4
|
2月前
|
关系型数据库 Apache 微服务
《聊聊分布式》分布式系统基石:深入理解CAP理论及其工程实践
CAP理论指出分布式系统中一致性、可用性、分区容错性三者不可兼得,必须根据业务需求进行权衡。实际应用中,不同场景选择不同策略:金融系统重一致(CP),社交应用重可用(AP),内网系统可选CA。现代架构更趋向动态调整与混合策略,灵活应对复杂需求。
|
2月前
|
NoSQL Java 网络安全
SpringBoot启动时连接Redis报错:ERR This instance has cluster support disabled - 如何解决?
通过以上步骤一般可以解决由于配置不匹配造成的连接错误。在调试问题时,一定要确保服务端和客户端的Redis配置保持同步一致。这能够确保SpringBoot应用顺利连接到正确配置的Redis服务,无论是单机模式还是集群模式。
275 5
|
2月前
|
缓存 负载均衡 监控
135_负载均衡:Redis缓存 - 提高缓存命中率的配置与最佳实践
在现代大型语言模型(LLM)部署架构中,缓存系统扮演着至关重要的角色。随着LLM应用规模的不断扩大和用户需求的持续增长,如何构建高效、可靠的缓存架构成为系统性能优化的核心挑战。Redis作为业界领先的内存数据库,因其高性能、丰富的数据结构和灵活的配置选项,已成为LLM部署中首选的缓存解决方案。
|
3月前
|
存储 缓存 NoSQL
Redis专题-实战篇二-商户查询缓存
本文介绍了缓存的基本概念、应用场景及实现方式,涵盖Redis缓存设计、缓存更新策略、缓存穿透问题及其解决方案。重点讲解了缓存空对象与布隆过滤器的使用,并通过代码示例演示了商铺查询的缓存优化实践。
219 1
Redis专题-实战篇二-商户查询缓存
|
2月前
|
缓存 运维 监控
Redis 7.0 高性能缓存架构设计与优化
🌟蒋星熠Jaxonic,技术宇宙中的星际旅人。深耕Redis 7.0高性能缓存架构,探索函数化编程、多层缓存、集群优化与分片消息系统,用代码在二进制星河中谱写极客诗篇。
|
3月前
|
消息中间件 监控 Java
Apache Kafka 分布式流处理平台技术详解与实践指南
本文档全面介绍 Apache Kafka 分布式流处理平台的核心概念、架构设计和实践应用。作为高吞吐量、低延迟的分布式消息系统,Kafka 已成为现代数据管道和流处理应用的事实标准。本文将深入探讨其生产者-消费者模型、主题分区机制、副本复制、流处理API等核心机制,帮助开发者构建可靠、可扩展的实时数据流处理系统。
404 4
|
3月前
|
消息中间件 缓存 监控
中间件架构设计与实践:构建高性能分布式系统的核心基石
摘要 本文系统探讨了中间件技术及其在分布式系统中的核心价值。作者首先定义了中间件作为连接系统组件的"神经网络",强调其在数据传输、系统稳定性和扩展性中的关键作用。随后详细分类了中间件体系,包括通信中间件(如RabbitMQ/Kafka)、数据中间件(如Redis/MyCAT)等类型。文章重点剖析了消息中间件的实现机制,通过Spring Boot代码示例展示了消息生产者的完整实现,涵盖消息ID生成、持久化、批量发送及重试机制等关键技术点。最后,作者指出中间件架构设计对系统性能的决定性影响,
|
2月前
|
机器学习/深度学习 监控 PyTorch
68_分布式训练技术:DDP与Horovod
随着大型语言模型(LLM)规模的不断扩大,从早期的BERT(数亿参数)到如今的GPT-4(万亿级参数),单卡训练已经成为不可能完成的任务。分布式训练技术应运而生,成为大模型开发的核心基础设施。2025年,分布式训练技术已经发展到相当成熟的阶段,各种优化策略和框架不断涌现,为大模型训练提供了强大的支持。