Spark 2.0 Structured Streaming 分析

简介: Spark 2.0 将流式计算也统一到DataFrame里去了,提出了Structured Streaming的概念,将数据源映射为一张无线长度的表,同时将流式计算的结果映射为另外一张表,完全以结构化的方式去操作流式数据,复用了其对象的Catalyst引擎。

前言

Spark 2.0 将流式计算也统一到DataFrame里去了,提出了Structured Streaming的概念,将数据源映射为一张无线长度的表,同时将流式计算的结果映射为另外一张表,完全以结构化的方式去操作流式数据,复用了其对象的Catalyst引擎。

Spark 2.0 之前

作为Spark平台的流式实现,Spark Streaming 是有单独一套抽象和API的,大体如下
af1d020b590f0e0146cca6156dcb608c272eecb9
图片来源于Spakr官网
代码的形态如下:
val conf = new SparkConf().setMaster("local[2]").setAppName("NetworkWordCount")
//构建StreamingContext
val ssc = new StreamingContext(conf, Seconds(1))

//获取输入源
val lines = ssc.socketTextStream("localhost", 9999)

//逻辑计算
val wordCounts = lines.flatMap(_.split(" ")).
map(word => (word, 1)).
reduceByKey(_ + _)

wordCounts.print()

//启动流式计算
ssc.start()         
ssc.awaitTermination()
上面都是套路,基本都得照着这么写。
Spark 2.0 时代
概念上,所谓流式,无非就是无限大的表,官方给出的图一目了然:
bcadb119fe819ac69f23fe1e7f1b702b693cd3dd
图片来源于官网

在之前的宣传PPT里,有类似的代码,给人焕然一新的感觉。当然,下面的代码你肯定要有上下文的,就这一句肯定跑不起来的。
7bc0b6bf8db6025e962ad361e0ce7e60b5a3e4e2
图片来源于http://litaotao.github.io/images/spark-2.0-7.png

第一个是标准的DataFrame的使用代码。下面第二个则是流式计算的代码,看完这个demo你肯定会纳闷:
  1. 没有定时器么,我怎么设置duration?
  2. 在哪里设置awaitTermination呢?
  3. 如果我要写入到其他引擎,而其他引擎没有适配咋办?
这些疑问其实归结起来就是:
Structured Streaming  的完整套路是啥?
我们来看看代码(例子来源于Spark源码,我稍微做了些修改):
val spark = SparkSession  .builder  .
master("local[2]")  .
appName("StructuredNetworkWordCount").
getOrCreate()


 val schemaExp = StructType(
      StructField("name", StringType, false) ::
        StructField("city", StringType, true)
        :: Nil
    )

//标准的DataSource API,只不过read变成了readStream
   val words = spark.readStream.format("json").schema(schemaExp)
      .load("file:///tmp/dir")

   // DataFrame 的一些API
    val wordCounts = words.groupBy("name").count()

    //标准的DataSource 写入 API,只不过write变成了writeStream
    val query = wordCounts.writeStream
//complete,append,update。目前只
//支持前面两种
      .outputMode("complete") 
//console,parquet,memory,foreach 四种
      .format("console")
      .trigger(ProcessingTime(5.seconds))//这里就是设置定时器了
      .start()

    query.awaitTermination()
这个就是Structured Streaming 的完整套路了。
Structured Streaming  目前Source源只支持File 和 Socket 两种。输出则是四种,前面已经提到。foreach则是可以无限扩展的。我举个例子:
val query = wordCounts.writeStream.trigger(ProcessingTime(5.seconds))
      .outputMode("complete")
      .foreach(new ForeachWriter[Row] {

      var fileWriter: FileWriter = _

      override def process(value: Row): Unit = {
        fileWriter.append(value.toSeq.mkString(","))
      }

      override def close(errorOrNull: Throwable): Unit = {
        fileWriter.close()
      }

      override def open(partitionId: Long, version: Long): Boolean = {
        FileUtils.forceMkdir(new File(s"/tmp/example/${partitionId}"))
        fileWriter = new FileWriter(new File(s"/tmp/example/${partitionId}/temp"))
        true
      }
    }).start()
我把数据最后写到各个节点的临时目录里。当然,这只是个例子,不过其他类似于写入Redis的,则是类似的。

Structured Streaming  不仅仅在于API的变化

如果Structured Streaming 仅仅是换个API,或者能够支持DataFrame操作,那么我只能感到遗憾了,因为2.0之前通过某些封装也能够很好的支持DataFrame的操作。那么 Structured Streaming 的意义到底何在?
  • 重新抽象了流式计算
  • 易于实现数据的exactly-once
我们知道,2.0之前的Spark Streaming 只能做到at-least once,框架层次很难帮你做到exactly-once,参考我以前写的文章Spark Streaming Crash 如何保证Exactly Once Semantics。 现在通过重新设计了流式计算框架,使得实现exactly-once 变得容易了。
可能你会注意到,在Structured Streaming 里,多出了outputMode,现在有complete,append,update 三种,现在的版本只实现了前面两种。
  1. complete,每次计算完成后,你都能拿到全量的计算结果。
  2. append,每次计算完成后,你能拿到增量的计算结果。
但是,这里有个但是,使用了聚合类函数才能用complete模式,只是简单的使用了map,filter等才能使用append模式。 不知道大家明白了这里的含义么?
complete 就是我们前面提到的mapWithState实现。 append 模式则是标准的对数据做解析处理,不做复杂聚合统计功能。
官方给出了complete 模式的图:
e502c7d136df143c1d31e399dcf1e0f01215d1ca
图片来源于官网

append 模式则是返回transform后最新的数据。
前面我们说到,现在的设计很简单,其实就是 无限大的 Source Table 映射到一张无限大的 Result Table上,每个周期完成后,都会更新Result Table。我们看到,Structured Streaming 已经接管了端到端了,可以通过内部机制保证数据的完整性,可靠性。
  • offset 概念,流式计算一定有offset的概念。
  • 对于无法回溯的数据源则采用了WAL日志
  • state概念,对result table 的每个分区都进行状态包装,分区的的每个ADD,PUT,UPDATE,DELETE操作,都会写入到HDFS上,方便系统恢复。
其中第三点是只有在2.0才有的概念。不过比较遗憾的是,result table 和ForeachWriter 并没有什么结合,系统只是保证result table的完整性,通过HDFSBackedStateStoreProvider将result table 保存到HDFS。
以前的API就是给你个partition的iterator,你爱怎么玩怎么玩,但是到了现在,以ForeachWriter为例,
override def process(value: Row): Unit = {
数据你只能一条一条处理了。理论上如果假设正好在process的过程中,系统挂掉了,那么数据就会丢了,但因为 Structured Streaming  如果是complete模式,因为是全量数据,所以其实做好覆盖就行,也就说是幂等的。
如果是append 模式,则可能只能保证at-least once ,而对于其内部,也就是result table 是可以保证exactly-once 的。对于比如数据库,本身是可以支持事物的,可以在foreachWrite close的时候commit下,有任何失败的时候则在close的时候,rollback 就行。但是对于其他的,比如HBase,Redis 则较为困难。
另外在ForeachWriter提供的初始化函数,
override def open(partitionId: Long, version: Long): Boolean = {
返回值是Boolean,通过检测版本号,是否跳过这个分区的数据处理。返回true是为不跳过,否则为跳过。当你打开的时候,可以通过某种手段保存version,再系统恢复的时候,则可以读取该版本号,低于该版本的则返回false,当前的则继续处理。
目录
相关文章
|
3月前
|
消息中间件 分布式计算 NoSQL
大数据-104 Spark Streaming Kafka Offset Scala实现Redis管理Offset并更新
大数据-104 Spark Streaming Kafka Offset Scala实现Redis管理Offset并更新
56 0
|
3月前
|
消息中间件 存储 分布式计算
大数据-103 Spark Streaming Kafka Offset管理详解 Scala自定义Offset
大数据-103 Spark Streaming Kafka Offset管理详解 Scala自定义Offset
115 0
|
3月前
|
SQL 分布式计算 Serverless
EMR Serverless Spark:一站式全托管湖仓分析利器
本文根据2024云栖大会阿里云 EMR 团队负责人李钰(绝顶) 演讲实录整理而成
210 2
|
2月前
|
分布式计算 流计算 Spark
【赵渝强老师】Spark Streaming中的DStream
本文介绍了Spark Streaming的核心概念DStream,即离散流。DStream通过时间间隔将连续的数据流转换为一系列不连续的RDD,再通过Transformation进行转换,实现流式数据的处理。文中以MyNetworkWordCount程序为例,展示了DStream生成RDD的过程,并附有视频讲解。
|
3月前
|
设计模式 数据采集 分布式计算
企业spark案例 —出租车轨迹分析
企业spark案例 —出租车轨迹分析
133 0
|
3月前
|
消息中间件 分布式计算 Kafka
大数据-102 Spark Streaming Kafka ReceiveApproach DirectApproach 附带Producer、DStream代码案例
大数据-102 Spark Streaming Kafka ReceiveApproach DirectApproach 附带Producer、DStream代码案例
73 0
|
3月前
|
SQL 分布式计算 大数据
大数据-101 Spark Streaming DStream转换 窗口操作状态 跟踪操作 附带多个案例(一)
大数据-101 Spark Streaming DStream转换 窗口操作状态 跟踪操作 附带多个案例(一)
64 0
|
3月前
|
存储 分布式计算 大数据
大数据-101 Spark Streaming DStream转换 窗口操作状态 跟踪操作 附带多个案例(二)
大数据-101 Spark Streaming DStream转换 窗口操作状态 跟踪操作 附带多个案例(二)
64 0
|
3月前
|
SQL 分布式计算 大数据
大数据-100 Spark 集群 Spark Streaming DStream转换 黑名单过滤的三种实现方式(一)
大数据-100 Spark 集群 Spark Streaming DStream转换 黑名单过滤的三种实现方式(一)
46 0
|
3月前
|
SQL 分布式计算 大数据
大数据-100 Spark 集群 Spark Streaming DStream转换 黑名单过滤的三种实现方式(二)
大数据-100 Spark 集群 Spark Streaming DStream转换 黑名单过滤的三种实现方式(二)
42 0