Python3——数据可视化模块Matplotlib

简介: Matplotlib 数据可视化模块。 Matplotlib 能够创建多数类型的图表,如条形图,散点图,饼图,堆叠图,3D 图和地图图表等。
Matplotlib 数据可视化模块。 Matplotlib 能够创建多数类型的图表,如条形图,散点图,饼图,堆叠图,3D 图和地图图表等
一、matplotlib安装(python 3.6)
进入cmd命令行输入pip3 install matplotlib
pip3 list (查看安装的包)

在PyCharm中引用这些包



二、绘制简单的折线图
1、绘制简单的折线图
#绘制简单的折线图
#导入模块pyplot,并给它指定别名plt
import matplotlib.pyplot as plt
input_value=[1,2,3,4,5]      #输入值
squares=[1,4,9,16,25]        #输出值
#plt.plot(squares)
plt.plot(input_value,squares,linewidth=5)         #设置线条的粗细
plt.title("Square Numbers",fontsize=24)         #给图标指定标题
plt.xlabel("Value",fontsize=14)                 #为x轴设置标题
plt.ylabel("Square of value",fontsize=14)            #为y轴设置标题
plt.tick_params(axis='both',labelsize=14)           #设置刻度标记大小
plt.show()          #打开matplotlib查看器

2、使用scatter绘制散点图
#使用scatter()绘制散点图
#plt.scatter(2,4,s=200)#绘制单个点坐标x=2,y=4;实参s设置点的尺寸
x_values=[1,2,3,4,5]
y_values=[1,4,9,16,25]
plt.scatter(x_values,y_values,s=100)                #绘制一系列点
plt.title("Square Numbers",fontsize=24)        #给图标指定标题
plt.xlabel("Value",fontsize=14)          #为x轴设置标题
plt.ylabel("Square of value",fontsize=14)             #为y轴设置标题
plt.tick_params(axis='both',which='major',labelsize=14)         #设置刻度标记大小
plt.show()

#自动计算数据
x_value=list(range(1,1001))
y_value=[x**2 for x in x_value]
plt.scatter(x_value,y_value,edgecolors='none',s=40)
plt.axis([0,1100,0,1100000])     #设置每个坐标轴的取值范围

#c='red'设置颜色为红色,edgecolors='none'删除数据点的轮廓
#c=(0,0,0.8)可以使用RGB颜色模式自定义颜色
plt.scatter(x_value,y_value,c='red',edgecolors='none',s=40)

#使用颜色映射colormap,从起始颜色渐变到结束颜色
#参数c=y_value是根据每个点的y值来设置其颜色,参数cmap表示使用哪个颜色映射
plt.scatter(x_value,y_value,c=y_value,cmap=plt.cm.Blues,edgecolors='none',s=40)

#自动保存图标用plt.savefig()
#第一个参数是保存文件名,第二个参数是将图标多余的空白区域剪掉
plt.savefig('squares_plot.png',bbox_inches='tight')




相关文章
|
1月前
|
机器学习/深度学习 数据可视化 搜索推荐
基于python的汽车数据可视化、推荐及预测系统
本研究围绕汽车数据可视化、推荐及预测系统展开,结合大数据与人工智能技术,旨在提升用户体验与市场竞争力。内容涵盖研究背景、意义、相关技术如 Python、ECharts、协同过滤及随机森林回归等,探讨如何挖掘汽车数据价值,实现个性化推荐与智能预测,为汽车行业智能化发展提供支持。
|
23天前
|
数据采集 Web App开发 自然语言处理
新闻热点一目了然:Python爬虫数据可视化
新闻热点一目了然:Python爬虫数据可视化
|
12天前
|
监控 安全 程序员
Python日志模块配置:从print到logging的优雅升级指南
从 `print` 到 `logging` 是 Python 开发的必经之路。`print` 调试简单却难维护,日志混乱、无法分级、缺乏上下文;而 `logging` 支持级别控制、多输出、结构化记录,助力项目可维护性升级。本文详解痛点、优势、迁移方案与最佳实践,助你构建专业日志系统,让程序“有记忆”。
127 0
|
1月前
|
数据采集 数据可视化 关系型数据库
基于python大数据的电影数据可视化分析系统
电影分析与可视化平台顺应电影产业数字化趋势,整合大数据处理、人工智能与Web技术,实现电影数据的采集、分析与可视化展示。平台支持票房、评分、观众行为等多维度分析,助力行业洞察与决策,同时提供互动界面,增强观众对电影文化的理解。技术上依托Python、MySQL、Flask、HTML等构建,融合数据采集与AI分析,提升电影行业的数据应用能力。
|
1月前
|
安全 大数据 程序员
Python operator模块的methodcaller:一行代码搞定对象方法调用的黑科技
`operator.methodcaller`是Python中处理对象方法调用的高效工具,替代冗长Lambda,提升代码可读性与性能。适用于数据过滤、排序、转换等场景,支持参数传递与链式调用,是函数式编程的隐藏利器。
81 4
|
1月前
|
数据采集 搜索推荐 数据可视化
基于python大数据的商品数据可视化及推荐系统
本系统基于Python、Django与ECharts,构建大数据商品可视化及推荐平台。通过爬虫获取商品数据,利用可视化技术呈现销售趋势与用户行为,结合机器学习实现个性化推荐,助力电商精准营销与用户体验提升。
|
27天前
|
存储 数据库 开发者
Python SQLite模块:轻量级数据库的实战指南
本文深入讲解Python内置sqlite3模块的实战应用,涵盖数据库连接、CRUD操作、事务管理、性能优化及高级特性,结合完整案例,助你快速掌握SQLite在小型项目中的高效使用,是Python开发者必备的轻量级数据库指南。
167 0
|
1月前
|
数据可视化 大数据 数据挖掘
基于python大数据的招聘数据可视化分析系统
本系统基于Python开发,整合多渠道招聘数据,利用数据分析与可视化技术,助力企业高效决策。核心功能包括数据采集、智能分析、可视化展示及权限管理,提升招聘效率与人才管理水平,推动人力资源管理数字化转型。
|
2月前
|
搜索推荐 算法 数据可视化
基于python大数据的招聘数据可视化及推荐系统
本研究聚焦于基于协同过滤的就业推荐系统设计与实现。随着就业压力增大和信息技术发展,传统求职方式面临挑战。通过分析用户行为与职位特征,协同过滤技术可实现个性化职位推荐,提升求职与招聘效率。研究涵盖系统架构、数据采集、算法实现及可视化展示,旨在优化就业匹配,促进人才与岗位精准对接,助力就业市场智能化发展。
|
2月前
|
存储 安全 数据处理
Python 内置模块 collections 详解
`collections` 是 Python 内置模块,提供多种高效数据类型,如 `namedtuple`、`deque`、`Counter` 等,帮助开发者优化数据处理流程,提升代码可读性与性能,适用于复杂数据结构管理与高效操作场景。
162 0

热门文章

最新文章

  • 1
    Python零基础爬取东方财富网股票行情数据指南
    224
  • 2
    解析Python爬虫中的Cookies和Session管理
    167
  • 3
    Python日志模块配置:从print到logging的优雅升级指南
    127
  • 4
    【可视化大屏】全流程讲解用python的pyecharts库实现拖拽可视化大屏的背后原理,简单粗暴!
    94
  • 5
    (Pandas)Python做数据处理必选框架之一!(二):附带案例分析;刨析DataFrame结构和其属性;学会访问具体元素;判断元素是否存在;元素求和、求标准值、方差、去重、删除、排序...
    108
  • 6
    (Pandas)Python做数据处理必选框架之一!(一):介绍Pandas中的两个数据结构;刨析Series:如何访问数据;数据去重、取众数、总和、标准差、方差、平均值等;判断缺失值、获取索引...
    203
  • 7
    (numpy)Python做数据处理必备框架!(二):ndarray切片的使用与运算;常见的ndarray函数:平方根、正余弦、自然对数、指数、幂等运算;统计函数:方差、均值、极差;比较函数...
    75
  • 8
    (numpy)Python做数据处理必备框架!(一):认识numpy;从概念层面开始学习ndarray数组:形状、数组转置、数值范围、矩阵...
    203
  • 9
    (Python基础)新时代语言!一起学习Python吧!(四):dict字典和set类型;切片类型、列表生成式;map和reduce迭代器;filter过滤函数、sorted排序函数;lambda函数
    67
  • 10
    (Python基础)新时代语言!一起学习Python吧!(三):IF条件判断和match匹配;Python中的循环:for...in、while循环;循环操作关键字;Python函数使用方法
    101
  • 推荐镜像

    更多