Python3——随机漫步生成数据并绘制

简介: Python随机漫步生成数据并绘制random_walk.pyfrom random import choice#生成随机漫步的数据类class RandomWalk(): def __init__(self,num_points=5000): #初始化随机漫步的属性 self.
Python随机漫步生成数据并绘制
random_walk.py
from random import choice
#生成随机漫步的数据类
class RandomWalk():
    def __init__(self,num_points=5000):   #初始化随机漫步的属性
        self.numpoints=num_points     #随机漫步的默认点数
        self.x_values=[0]                   #所有的随机漫步都始于(0.0)
        self.y_values=[0]
    def fill_walk(self):
        while len(self.x_values)<self.numpoints:
            #决定前进方向及前进方向的距离
            x_direction=choice([1,-1])
            x_distance=choice([0,1,2,3,4])
            x_step=x_direction*x_distance

            y_direction=choice([1,-1])
            y_distance=choice([0,1,2,3,4])
            y_step=y_direction*y_distance
            #拒绝原地踏步
            if x_step==0 and y_step==0:
                continue
            #计算下一个点的x和y的值
            next_x=self.x_values[-1]+x_step
            next_y=self.y_values[-1]+y_step
            self.x_values.append(next_x)
            self.y_values.append(next_y)
rw_visual.py
import matplotlib.pyplot as plt
from random_walk import RandomWalk

# 创建一个RandomWalk实例,并将其包含的点都绘制出来
rw = RandomWalk()
rw.fill_walk()
plt.scatter(rw.x_values, rw.y_values, s=15)
#重新绘制起点和终点(突出起点和终点)
plt.scatter(0,0,c='green',edgecolors='none',s=100)
plt.scatter(rw.x_values[-1],rw.y_values[-1],c="red",edgecolors='none',s=100)
#隐藏坐标轴
plt.axes().get_xaxis().set_visible(False)
plt.axes().get_yaxis().set_visible(False)
#设置窗口的屏幕分辨率和尺寸
plt.figure(dpi=128,figsize=(10,6))
plt.show()

结果图:













相关文章
|
1月前
|
机器学习/深度学习 新能源 调度
电力系统短期负荷预测(Python代码+数据+详细文章讲解)
电力系统短期负荷预测(Python代码+数据+详细文章讲解)
181 1
|
1月前
|
缓存 API 网络架构
淘宝item_search_similar - 搜索相似的商品API接口,用python返回数据
淘宝联盟开放平台中,可通过“物料优选接口”(taobao.tbk.dg.optimus.material)实现“搜索相似商品”功能。该接口支持根据商品 ID 获取相似推荐商品,并返回商品信息、价格、优惠等数据,适用于商品推荐、比价等场景。本文提供基于 Python 的实现示例,包含接口调用、数据解析及结果展示。使用时需配置淘宝联盟的 appkey、appsecret 和 adzone_id,并注意接口调用频率限制和使用规范。
|
26天前
|
存储 监控 API
Python实战:跨平台电商数据聚合系统的技术实现
本文介绍如何通过标准化API调用协议,实现淘宝、京东、拼多多等电商平台的商品数据自动化采集、清洗与存储。内容涵盖技术架构设计、Python代码示例及高阶应用(如价格监控系统),提供可直接落地的技术方案,帮助开发者解决多平台数据同步难题。
|
29天前
|
存储 JSON 算法
Python集合:高效处理无序唯一数据的利器
Python集合是一种高效的数据结构,具备自动去重、快速成员检测和无序性等特点,适用于数据去重、集合运算和性能优化等场景。本文通过实例详解其用法与技巧。
86 0
|
2月前
|
存储 Web App开发 前端开发
Python + Requests库爬取动态Ajax分页数据
Python + Requests库爬取动态Ajax分页数据
|
2月前
|
JSON API 数据格式
Python采集京东商品评论API接口示例,json数据返回
下面是一个使用Python采集京东商品评论的完整示例,包括API请求、JSON数据解析
|
11天前
|
JSON API 数据安全/隐私保护
Python采集淘宝评论API接口及JSON数据返回全流程指南
Python采集淘宝评论API接口及JSON数据返回全流程指南
|
13天前
|
数据采集 数据可视化 关系型数据库
基于python大数据的电影数据可视化分析系统
电影分析与可视化平台顺应电影产业数字化趋势,整合大数据处理、人工智能与Web技术,实现电影数据的采集、分析与可视化展示。平台支持票房、评分、观众行为等多维度分析,助力行业洞察与决策,同时提供互动界面,增强观众对电影文化的理解。技术上依托Python、MySQL、Flask、HTML等构建,融合数据采集与AI分析,提升电影行业的数据应用能力。
|
1月前
|
JSON 安全 API
Python处理JSON数据的最佳实践:从基础到进阶的实用指南
JSON作为数据交换通用格式,广泛应用于Web开发与API交互。本文详解Python处理JSON的10个关键实践,涵盖序列化、复杂结构处理、性能优化与安全编程,助开发者高效应对各类JSON数据挑战。
135 1
|
22天前
|
数据可视化 大数据 数据挖掘
基于python大数据的招聘数据可视化分析系统
本系统基于Python开发,整合多渠道招聘数据,利用数据分析与可视化技术,助力企业高效决策。核心功能包括数据采集、智能分析、可视化展示及权限管理,提升招聘效率与人才管理水平,推动人力资源管理数字化转型。

推荐镜像

更多