NumPy—random随机数生成函数总结

简介: import numpy as np1、np.linspace(start,end,num) start代表起始的值,end表示结束的值,num表示在这个区间里生成数字的个数,生成的数组是等间隔生成的。
import numpy as np
1、np.linspace(start,end,num)
start 代表起始的值, end 表示结束的值, num 表示在这个区间里生成数字的个数,生成的数组是 等间隔 生成的。start和end这两个数字可以是整数或者浮点数

2、np.random.normal(loc, scale, size)
loc :float
此概率分布的 均值 (对应着整个分布的中心centre)
scale :float
此概率分布的 标准差 (对应于分布的宽度,scale越大越矮胖,scale越小,越瘦高)
size :int or tuple of ints
输出的shape,默认为None,只输出一个值
注: np.random.randn(size) 所谓标准正态分布( μ=0,σ=1 ),对应于 np.random.normal(loc=0, scale=1, size)


3、np.random.uniform(low, high, size)
功能 :从一个 均匀分布 [low,high)中随机采样,注意定义域是左闭右开,即包含low,不包含high
参数介绍:  
    low: 采样下界,float类型,默认值为0;
    high: 采样上界,float类型,默认值为1;
     size: 输出样本数目,为int或元组(tuple)类型


4、np.random


5、 numpy.random.RandomState()
伪随机数产生器的种子
对于某一个伪随机数发生器,只要该种子(seed)相同,产生的随机数序列就是相同的













相关文章
|
2月前
|
Python
NumPy 教程 之 NumPy 统计函数 9
NumPy提供了多种统计函数,如计算数组中的最小值、最大值、百分位数、标准差及方差等。其中,标准差是一种衡量数据平均值分散程度的指标,它是方差的算术平方根。例如,对于数组[1,2,3,4],其标准差可通过计算各值与均值2.5的差的平方的平均数的平方根得出,结果为1.1180339887498949。示例代码如下: ```python import numpy as np print(np.std([1,2,3,4])) ``` 运行输出即为:1.1180339887498949。
118 50
|
1月前
|
Python
Numpy学习笔记(五):np.concatenate函数和np.append函数用于数组拼接
NumPy库中的`np.concatenate`和`np.append`函数,它们分别用于沿指定轴拼接多个数组以及在指定轴上追加数组元素。
27 0
Numpy学习笔记(五):np.concatenate函数和np.append函数用于数组拼接
|
2月前
|
Python
NumPy 教程 之 NumPy 统计函数 10
NumPy统计函数,包括查找数组中的最小值、最大值、百分位数、标准差和方差等。方差表示样本值与平均值之差的平方的平均数,而标准差则是方差的平方根。例如,`np.var([1,2,3,4])` 的方差为 1.25。
101 48
|
2月前
|
机器学习/深度学习 搜索推荐 算法
NumPy 教程 之 NumPy 排序、条件筛选函数 8
NumPy提供了多种排序方法,包括快速排序、归并排序及堆排序,各有不同的速度、最坏情况性能、工作空间和稳定性特点。此外,NumPy还提供了`numpy.extract()`函数,可以根据特定条件从数组中抽取元素。例如,在一个3x3数组中,通过定义条件选择偶数元素,并使用该函数提取这些元素。示例输出为:[0., 2., 4., 6., 8.]。
26 8
|
2月前
|
机器学习/深度学习 搜索推荐 算法
NumPy 教程 之 NumPy 排序、条件筛选函数 2
介绍NumPy` 中的排序方法与条件筛选函数。通过对比快速排序、归并排序及堆排序的速度、最坏情况性能、工作空间需求和稳定性,帮助读者选择合适的排序算法。此外,还深入讲解了 `numpy.argsort()` 的使用方法,并通过具体实例展示了如何利用该函数获取数组值从小到大的索引值,并据此重构原数组,使得其变为有序状态。对于学习 `NumPy` 排序功能来说,本教程提供了清晰且实用的指导。
34 7
|
2月前
|
机器学习/深度学习 搜索推荐 算法
NumPy 教程 之 NumPy 排序、条件筛选函数 5
NumPy中的排序方法及特性对比,包括快速排序、归并排序与堆排序的速度、最坏情况性能、工作空间及稳定性分析。并通过`numpy.argmax()`与`numpy.argmin()`函数演示了如何获取数组中最大值和最小值的索引,涵盖不同轴方向的操作,并提供了具体实例与输出结果,便于理解与实践。
24 5
|
2月前
|
算法 索引 Python
Numpy 的一些以 arg 开头的函数
Numpy 的一些以 arg 开头的函数
42 0
|
3月前
|
索引 Python
NumPy 教程 之 NumPy 统计函数 8
这段内容介绍了 NumPy 中的 `numpy.average()` 函数,该函数用于计算数组中元素的加权平均值。可以通过设置 `axis` 参数指定计算的轴,`weights` 参数用于指定权重,默认为等权重。示例展示了如何在一维和多维数组中使用此函数,并通过 `returned=True` 返回加权平均值和权重总和。
25 1
|
3月前
|
存储 索引 Python
NumPy 教程 之 NumPy 统计函数 6
这段内容介绍了 NumPy 中的 `numpy.mean()` 函数,该函数用于计算数组元素的算术平均值。通过设置 `axis` 参数,可以在不同轴上计算平均值。示例展示了如何对一个二维数组进行整体及按行、列计算平均值的过程及其结果。
36 2
|
2月前
|
机器学习/深度学习 搜索推荐 算法
NumPy 教程 之 NumPy 排序、条件筛选函数 4
NumPy提供了多种排序方法,包括快速排序、归并排序及堆排序等,具有不同的执行速度、最坏情况性能、工作空间需求及稳定性特征。教程涵盖了`msort`、`sort_complex`、`partition`和`argpartition`等函数的使用方法,并通过实例展示了复数排序与分区排序的应用。例如,`np.sort_complex()`用于复数排序,`np.partition()`实现基于指定位置的分区排序,而`argpartition()`则帮助快速找到数组中的特定值。
12 0