matlab处理txt文件数据

简介: read_txtfile.,mclearclose allclc%load函数一般将用来导入纯数字的文件,可以是文本格式的文件或者是matlab保存的mat格式的文件position=load('坐标点.

read_txtfile.,m

clear
close all
clc
%load函数一般将用来导入纯数字的文件,可以是文本格式的文件或者是matlab保存的mat格式的文件
position=load('坐标点.txt');   %将.txt数据读入到matlab工作空间

[m,n]=size(position);    %获得数据矩阵的大小
j=1;
sumx=0;
sumy=0;
for i=1:10
    sumx=sumx+position(i,1);
    sumy=sumy+position(i,2);
end
ave(j,1)=sumx/10;ave(j,2)=sumy/10;  %求平均值并存在ave中
j=j+1;
sumx=0;
sumy=0;
for i=11:19
    sumx=sumx+position(i,1);
    sumy=sumy+position(i,2);
end
ave(j,1)=sumx/9;ave(j,2)=sumy/9;
j=j+1;
sumx=0;
sumy=0;
for i=20:24
sumx=sumx+position(i,1);
sumy=sumy+position(i,2);
end
ave(j,1)=sumx/5;ave(j,2)=sumy/5;
j=j+1;
sumx=0;
sumy=0;
for i=25:34
sumx=sumx+position(i,1);
sumy=sumy+position(i,2);
end
ave(j,1)=sumx/10;ave(j,2)=sumy/10;
j=j+1;
sumx=0;
sumy=0;
for i=35:41
sumx=sumx+position(i,1);
sumy=sumy+position(i,2);
end
ave(j,1)=sumx/7;ave(j,2)=sumy/7;
j=j+1;
sumx=0;
sumy=0;
for i=42:47
sumx=sumx+position(i,1);
sumy=sumy+position(i,2);
end
ave(j,1)=sumx/6;ave(j,2)=sumy/6;
j=j+1;
sumx=0;
sumy=0;
for i=48:53
sumx=sumx+position(i,1);
sumy=sumy+position(i,2);
end
ave(j,1)=sumx/6;ave(j,2)=sumy/6;
j=j+1;
sumx=0;
sumy=0;
for i=54:58
sumx=sumx+position(i,1);
sumy=sumy+position(i,2);
end
ave(j,1)=sumx/5;ave(j,2)=sumy/5;
j=j+1;
sumx=0;
sumy=0;
for i=59:63
sumx=sumx+position(i,1);
sumy=sumy+position(i,2);
end
ave(j,1)=sumx/5;ave(j,2)=sumy/5;
j=j+1;
sumx=0;
sumy=0;
for i=64:68
sumx=sumx+position(i,1);
sumy=sumy+position(i,2);
end
ave(j,1)=sumx/5;ave(j,2)=sumy/5;

save('ave.txt','ave','-ASCII');     %将变量ave的数据写入ave.txt文件并保存,使用ASCII格式
save('test.txt','-ASCII')   %把当前工作空间的所有变量保存到test.txt文件中


ave变量数据



坐标点.txt数据

264,715  
258,719  
274,728  
264,728  
254,728  
257,733  
260,731  
262,733  
268,733  
270,739  
225,605  
223,598  
210,605  
220,610  
223,615  
209,615  
230,620  
220,622  
205,618  
168,538  
168,542  
164,544  
168,545  
174,544  
210,455  
180,455  
175,452  
170,453  
185,460  
178,460  
190,470  
183,473  
175,472  
180,476  
120,400  
119,388  
112,394  
125,410  
114,405  
116,410  
113,416  
96,304  
88,305  
100,312  
93,311  
86,310  
94,315  
10,451  
11,449  
13,450  
16,450  
12,453  
15,455  
162,660  
161,659  
159,659  
160,657  
164,658  
110,561  
110,563  
110,565  
109,567  
112,568  
105,473  
106,471  
103,473  
107,475  
104,477  



相关文章
|
3天前
|
传感器 机器学习/深度学习 算法
【使用 DSP 滤波器加速速度和位移】使用信号处理算法过滤加速度数据并将其转换为速度和位移研究(Matlab代码实现)
【使用 DSP 滤波器加速速度和位移】使用信号处理算法过滤加速度数据并将其转换为速度和位移研究(Matlab代码实现)
|
9天前
|
机器学习/深度学习 算法 调度
14种智能算法优化BP神经网络(14种方法)实现数据预测分类研究(Matlab代码实现)
14种智能算法优化BP神经网络(14种方法)实现数据预测分类研究(Matlab代码实现)
|
9天前
|
传感器 机器学习/深度学习 算法
【室内导航通过视觉惯性数据融合】将用户携带的智能手机收集的惯性数据与手机相机获取的视觉信息进行融合研究(Matlab代码实现)
【室内导航通过视觉惯性数据融合】将用户携带的智能手机收集的惯性数据与手机相机获取的视觉信息进行融合研究(Matlab代码实现)
|
17天前
|
算法 数据挖掘 定位技术
基于密度的聚类算法能够在含有噪声的数据集中识别出任意形状和大小的簇(Matlab代码实现)
基于密度的聚类算法能够在含有噪声的数据集中识别出任意形状和大小的簇(Matlab代码实现)
|
22天前
|
传感器 算法 机器人
【IMU数据与GPS融合的预积分方法】基于流形的IMU预积分,用于高效的视觉惯性最大后验估计、SE3姿势区分为IMU(Matlab代码实现)
【IMU数据与GPS融合的预积分方法】基于流形的IMU预积分,用于高效的视觉惯性最大后验估计、SE3姿势区分为IMU(Matlab代码实现)
|
28天前
|
机器学习/深度学习 数据采集 运维
基于核密度估计Kernel Density Estimation, KDE的数据生成方法研究(Matlab代码实现)
基于核密度估计Kernel Density Estimation, KDE的数据生成方法研究(Matlab代码实现)
|
1月前
|
数据采集 编解码 算法
MATLAB|风力涡轮机雷达信号仿真+数据+文章
MATLAB|风力涡轮机雷达信号仿真+数据+文章
|
9天前
|
传感器 算法 定位技术
【GPS+INS在MAV导航上融合】基于间接卡尔曼滤波的IMU与GPS融合MATLAB仿真(IMU与GPS数据由仿真生成)
【GPS+INS在MAV导航上融合】基于间接卡尔曼滤波的IMU与GPS融合MATLAB仿真(IMU与GPS数据由仿真生成)
|
9天前
|
机器学习/深度学习 安全 Serverless
【创新未发表】【故障诊断】基于连续小波变换-CNN, ResNet, CNN-SVM, CNN-BiGRU, CNN-LSTM的故障诊断研究【凯斯西储大学数据】(Matlab代码实现)
【创新未发表】【故障诊断】基于连续小波变换-CNN, ResNet, CNN-SVM, CNN-BiGRU, CNN-LSTM的故障诊断研究【凯斯西储大学数据】(Matlab代码实现)
|
27天前
|
机器学习/深度学习 传感器 边缘计算
【轴承故障诊断】基于融合鱼鹰和柯西变异的麻雀优化算法OCSSA-VMD-CNN-BILSTM轴承诊断研究【西储大学数据】(Matlab代码实现)
【轴承故障诊断】基于融合鱼鹰和柯西变异的麻雀优化算法OCSSA-VMD-CNN-BILSTM轴承诊断研究【西储大学数据】(Matlab代码实现)

热门文章

最新文章