CNN卷积神经网络

简介: 一、BP神经网络回顾人工全连接神经网络(1)每相邻两层之间的每个神经元之间都是有边相连的(2)当输入层的特征维度变得很高时,这时全连接网络需要训练              的参数就会增大很多,计算速度就会变得...

一、BP神经网络回顾


人工全连接神经网络
(1)每相邻两层之间的每个神经元之间都是有边相连的
(2)当输入层的特征维度变得很高时,这时全连接网络需要训练
              的参数就会增大很多,计算速度就会变得很慢
传统神经网络存在的问题:
(1)权值太多,计算量太大
(2)权值太多,需要大量样本进行训练

二、CNN卷积神经网络
1、CNN的主要概述
卷积层的神经元只与前一层的 部分神经元节点相连 ,即它的神经元间的连接是非全连接的,且同一层中某些神经元之间的连接的 权重w 偏置b 是共享的(即相同的)
      大量地减少了需要训练参数的数量
CNN主要特点 :减少权值,局部连接,权值共享
CNN通过 感受野 权值共享 减少了神经网络需要训练的参数的个数。
2、CNN的一般结构
输入层 :用于数据的输入
卷积层 :使用 卷积核 进行 特征提取 特征映射
激励层 :由于卷积也是一种线性运算,因此需要增加非线性映射
池化层 :压缩数据和参数的量,减小过拟合。
全连接层 :通常在 CNN 的尾部进行重新拟合,减少特征信息的损失
输出层 :用于输出结果
(1)输入层
在CNN的输入层中,(图片)数据输入的格式与全连接神经网络的输入格式(一维向量)不太一样。CNN的输入层的输入 格式保留了图片本身的结构
对于黑白的 28×28 的图片,CNN的输入是一个28×28 的的 二维神经元
对于RGB格式的28×28图片,CNN的输入则是一个 3×28×28 的 三维神经元 (RGB中的每一个颜色通道都有一个 28×28 的矩阵),如下图所示:

(2)卷积层
需要明确的几个概念:
感受视野(  local receptive fields
    即感受 上一层的部分特征。在卷积神经网络中,隐藏层中的神经元的感受视野比较小,只能看到上一次的 部分特征 ,上一层的其他特征可以通过 平移感受视野 来得到同一层的其他神经元。
卷积核
    感受视野中的 权重矩阵
共享权值( shared weights
步长( stride
    感受 视野对输入的扫描间隔称为 步长( stride
边界扩充( pad
     当 步长比较大时( stride>1 ),为了扫描到边缘的一些特征,感受视野可能会 “出界” ,这时需要对 边界扩充 (pad)
特征映射图( feature map
     通过一 个带有 卷积核 感受视野  扫描生成的下一层神经元矩阵 称为一个 特征映射图( feature map
通过以下图理解以上概念及卷积计算



(3)激励层
激励层主要对卷积层的输出进行一个 非线性映射 ,因为卷积层的计算还是一种线性计算。使用的激励函数一般为 ReLu 函数
      卷积 层和激励层通常合并在一起称为“卷积层”。
(4)池化层
当输入经过卷积层时,若感受视野比较小,布长 stride 比较小,得到的 feature map (特征映射图)还是比较大,可以通过池化层来对每一个 feature map 进行 降维操作 ,输出的深度还是不变的,依然为 feature map 的个数。
池化层也有一个“池化视野( filter )”来对 feature map 矩阵进行扫描,对“池化视野”中的 矩阵值进行计算 ,一般有两种计算方式:
   (1 Max pooling :取“池化视野”矩阵中的 最大值
   (2 Average pooling :取“池化视野”矩阵中的 平均值


(5)全连接层和输出层
全连接层 主要对特征进行重新拟合,减少特征信息的丢失。
输出层 主要准备做好最后目标结果的输出。
(6)中间还可以使用其他的功能层
归一化层 Batch Normalization ):在 CNN 中对特征的归一化
  切分层 :对某些(图片)数据的进行分区域的单独学习
   融合层 :对独立进行特征学习的分支进行融合



CNN卷积神经网络实现Mnist数据集:








参考博客资料:




相关文章
|
8天前
|
机器学习/深度学习 编解码 自动驾驶
RT-DETR改进策略【模型轻量化】| 替换骨干网络为MoblieNetV1,用于移动视觉应用的高效卷积神经网络
RT-DETR改进策略【模型轻量化】| 替换骨干网络为MoblieNetV1,用于移动视觉应用的高效卷积神经网络
31 3
RT-DETR改进策略【模型轻量化】| 替换骨干网络为MoblieNetV1,用于移动视觉应用的高效卷积神经网络
|
5天前
|
机器学习/深度学习 人工智能 算法
基于Python深度学习的【蘑菇识别】系统~卷积神经网络+TensorFlow+图像识别+人工智能
蘑菇识别系统,本系统使用Python作为主要开发语言,基于TensorFlow搭建卷积神经网络算法,并收集了9种常见的蘑菇种类数据集【"香菇(Agaricus)", "毒鹅膏菌(Amanita)", "牛肝菌(Boletus)", "网状菌(Cortinarius)", "毒镰孢(Entoloma)", "湿孢菌(Hygrocybe)", "乳菇(Lactarius)", "红菇(Russula)", "松茸(Suillus)"】 再使用通过搭建的算法模型对数据集进行训练得到一个识别精度较高的模型,然后保存为为本地h5格式文件。最后使用Django框架搭建了一个Web网页平台可视化操作界面,
43 11
基于Python深度学习的【蘑菇识别】系统~卷积神经网络+TensorFlow+图像识别+人工智能
|
12天前
|
机器学习/深度学习 编解码 自动驾驶
YOLOv11改进策略【模型轻量化】| 替换骨干网络为MoblieNetV1,用于移动视觉应用的高效卷积神经网络
YOLOv11改进策略【模型轻量化】| 替换骨干网络为MoblieNetV1,用于移动视觉应用的高效卷积神经网络
40 16
YOLOv11改进策略【模型轻量化】| 替换骨干网络为MoblieNetV1,用于移动视觉应用的高效卷积神经网络
|
12天前
|
机器学习/深度学习 存储
YOLOv11改进策略【模型轻量化】| PP-LCNet:轻量级的CPU卷积神经网络
YOLOv11改进策略【模型轻量化】| PP-LCNet:轻量级的CPU卷积神经网络
38 15
YOLOv11改进策略【模型轻量化】| PP-LCNet:轻量级的CPU卷积神经网络
|
9天前
|
机器学习/深度学习
YOLOv11改进策略【Neck】| GSConv+Slim Neck:混合深度可分离卷积和标准卷积的轻量化网络设计
YOLOv11改进策略【Neck】| GSConv+Slim Neck:混合深度可分离卷积和标准卷积的轻量化网络设计
41 8
YOLOv11改进策略【Neck】| GSConv+Slim Neck:混合深度可分离卷积和标准卷积的轻量化网络设计
|
8天前
|
机器学习/深度学习 编解码 移动开发
RT-DETR改进策略【Conv和Transformer】| TPAMI-2024 Conv2Former 利用卷积调制操作和大核卷积简化自注意力机制,提高网络性能
RT-DETR改进策略【Conv和Transformer】| TPAMI-2024 Conv2Former 利用卷积调制操作和大核卷积简化自注意力机制,提高网络性能
26 5
RT-DETR改进策略【Conv和Transformer】| TPAMI-2024 Conv2Former 利用卷积调制操作和大核卷积简化自注意力机制,提高网络性能
|
12天前
|
机器学习/深度学习 编解码 移动开发
YOLOv11改进策略【Conv和Transformer】| TPAMI-2024 Conv2Former 利用卷积调制操作和大核卷积简化自注意力机制,提高网络性能
YOLOv11改进策略【Conv和Transformer】| TPAMI-2024 Conv2Former 利用卷积调制操作和大核卷积简化自注意力机制,提高网络性能
23 7
YOLOv11改进策略【Conv和Transformer】| TPAMI-2024 Conv2Former 利用卷积调制操作和大核卷积简化自注意力机制,提高网络性能
|
8天前
|
机器学习/深度学习
RT-DETR改进策略【Neck】| GSConv+Slim Neck:混合深度可分离卷积和标准卷积的轻量化网络设计
RT-DETR改进策略【Neck】| GSConv+Slim Neck:混合深度可分离卷积和标准卷积的轻量化网络设计
35 11
|
3天前
|
机器学习/深度学习 数据采集 算法
基于GWO灰狼优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
本项目基于MATLAB2022a,展示了时间序列预测算法的运行效果(无水印)。核心程序包含详细中文注释和操作视频。算法采用CNN-GRU-SAM网络,结合灰狼优化(GWO),通过卷积层提取局部特征、GRU处理长期依赖、自注意力机制捕捉全局特征,最终实现复杂非线性时间序列的高效预测。
|
8天前
|
机器学习/深度学习 存储
RT-DETR改进策略【模型轻量化】| PP-LCNet:轻量级的CPU卷积神经网络
RT-DETR改进策略【模型轻量化】| PP-LCNet:轻量级的CPU卷积神经网络
27 0
RT-DETR改进策略【模型轻量化】| PP-LCNet:轻量级的CPU卷积神经网络

热门文章

最新文章