CNN卷积神经网络

简介: 一、BP神经网络回顾人工全连接神经网络(1)每相邻两层之间的每个神经元之间都是有边相连的(2)当输入层的特征维度变得很高时,这时全连接网络需要训练              的参数就会增大很多,计算速度就会变得...

一、BP神经网络回顾


人工全连接神经网络
(1)每相邻两层之间的每个神经元之间都是有边相连的
(2)当输入层的特征维度变得很高时,这时全连接网络需要训练
              的参数就会增大很多,计算速度就会变得很慢
传统神经网络存在的问题:
(1)权值太多,计算量太大
(2)权值太多,需要大量样本进行训练

二、CNN卷积神经网络
1、CNN的主要概述
卷积层的神经元只与前一层的 部分神经元节点相连 ,即它的神经元间的连接是非全连接的,且同一层中某些神经元之间的连接的 权重w 偏置b 是共享的(即相同的)
      大量地减少了需要训练参数的数量
CNN主要特点 :减少权值,局部连接,权值共享
CNN通过 感受野 权值共享 减少了神经网络需要训练的参数的个数。
2、CNN的一般结构
输入层 :用于数据的输入
卷积层 :使用 卷积核 进行 特征提取 特征映射
激励层 :由于卷积也是一种线性运算,因此需要增加非线性映射
池化层 :压缩数据和参数的量,减小过拟合。
全连接层 :通常在 CNN 的尾部进行重新拟合,减少特征信息的损失
输出层 :用于输出结果
(1)输入层
在CNN的输入层中,(图片)数据输入的格式与全连接神经网络的输入格式(一维向量)不太一样。CNN的输入层的输入 格式保留了图片本身的结构
对于黑白的 28×28 的图片,CNN的输入是一个28×28 的的 二维神经元
对于RGB格式的28×28图片,CNN的输入则是一个 3×28×28 的 三维神经元 (RGB中的每一个颜色通道都有一个 28×28 的矩阵),如下图所示:

(2)卷积层
需要明确的几个概念:
感受视野(  local receptive fields
    即感受 上一层的部分特征。在卷积神经网络中,隐藏层中的神经元的感受视野比较小,只能看到上一次的 部分特征 ,上一层的其他特征可以通过 平移感受视野 来得到同一层的其他神经元。
卷积核
    感受视野中的 权重矩阵
共享权值( shared weights
步长( stride
    感受 视野对输入的扫描间隔称为 步长( stride
边界扩充( pad
     当 步长比较大时( stride>1 ),为了扫描到边缘的一些特征,感受视野可能会 “出界” ,这时需要对 边界扩充 (pad)
特征映射图( feature map
     通过一 个带有 卷积核 感受视野  扫描生成的下一层神经元矩阵 称为一个 特征映射图( feature map
通过以下图理解以上概念及卷积计算



(3)激励层
激励层主要对卷积层的输出进行一个 非线性映射 ,因为卷积层的计算还是一种线性计算。使用的激励函数一般为 ReLu 函数
      卷积 层和激励层通常合并在一起称为“卷积层”。
(4)池化层
当输入经过卷积层时,若感受视野比较小,布长 stride 比较小,得到的 feature map (特征映射图)还是比较大,可以通过池化层来对每一个 feature map 进行 降维操作 ,输出的深度还是不变的,依然为 feature map 的个数。
池化层也有一个“池化视野( filter )”来对 feature map 矩阵进行扫描,对“池化视野”中的 矩阵值进行计算 ,一般有两种计算方式:
   (1 Max pooling :取“池化视野”矩阵中的 最大值
   (2 Average pooling :取“池化视野”矩阵中的 平均值


(5)全连接层和输出层
全连接层 主要对特征进行重新拟合,减少特征信息的丢失。
输出层 主要准备做好最后目标结果的输出。
(6)中间还可以使用其他的功能层
归一化层 Batch Normalization ):在 CNN 中对特征的归一化
  切分层 :对某些(图片)数据的进行分区域的单独学习
   融合层 :对独立进行特征学习的分支进行融合



CNN卷积神经网络实现Mnist数据集:








参考博客资料:




相关文章
|
3天前
|
机器学习/深度学习 人工智能 自动驾驶
深度学习中的卷积神经网络(CNN)及其在图像识别中的应用
【8月更文挑战第28天】本文将深入探讨深度学习领域的核心概念之一——卷积神经网络(CNN),并展示其在图像识别任务中的强大能力。文章首先介绍CNN的基本结构,然后通过一个简单的代码示例来演示如何构建一个基础的CNN模型。接着,我们将讨论CNN如何处理图像数据以及它在图像分类、检测和分割等任务中的应用。最后,文章将指出CNN面临的挑战和未来的发展方向。
|
3天前
|
机器学习/深度学习 算法框架/工具 计算机视觉
深度学习中的卷积神经网络(CNN)及其在图像识别中的应用
【8月更文挑战第28天】本文深入探讨了深度学习领域中的一个核心概念——卷积神经网络(CNN),并详细解释了其在图像识别任务中的强大应用。从CNN的基本结构出发,我们逐步展开对其工作原理的解析,并通过实际代码示例,展示如何利用CNN进行有效的图像处理和识别。文章旨在为初学者提供一个清晰的学习路径,同时也为有经验的开发者提供一些深入的见解和应用技巧。
18 1
|
1天前
|
机器学习/深度学习 人工智能 自然语言处理
深度学习中的卷积神经网络(CNN)简介
【8月更文挑战第30天】在人工智能的浪潮中,深度学习以其强大的数据处理能力成为时代的宠儿。本文将深入浅出地介绍深度学习的一个重要分支——卷积神经网络(CNN),并探讨其如何在图像识别等领域大放异彩。通过实例,我们将一窥CNN的神秘面纱,理解其背后的原理,并探索如何利用这一工具解锁数据的深层价值。
|
2天前
|
机器学习/深度学习 网络安全 TensorFlow
探索操作系统的心脏:内核与用户空间的奥秘云计算与网络安全:技术挑战与未来趋势深度学习中的卷积神经网络(CNN)及其在图像识别中的应用
【8月更文挑战第29天】在数字世界的每一次点击与滑动背后,都隐藏着一个不为人知的故事。这个故事关于操作系统——计算机的灵魂,它如何协调硬件与软件,管理资源,并确保一切运行得井井有条。本文将带你走进操作系统的核心,揭示内核与用户空间的秘密,展现它们如何共同编织出我们日常数字生活的底层结构。通过深入浅出的讲解和代码示例,我们将一同解锁操作系统的神秘面纱,理解其对现代计算的重要性。 【8月更文挑战第29天】本文将深入探讨卷积神经网络(CNN)的基本原理和结构,以及它们如何被广泛应用于图像识别任务中。我们将通过代码示例来展示如何使用Python和TensorFlow库构建一个简单的CNN模型,并训练
|
7天前
|
机器学习/深度学习 人工智能 自动驾驶
深度学习中的卷积神经网络(CNN)及其在图像识别中的应用
【8月更文挑战第24天】本文将带你走进深度学习的神奇世界,特别是卷积神经网络(CNN)这一强大的工具。我们将从CNN的基础概念出发,通过直观的例子和简单的代码片段,探索其在图像识别领域的应用。无论你是深度学习的初学者还是希望深化理解的进阶者,这篇文章都将为你提供有价值的见解。
|
5天前
|
机器学习/深度学习 人工智能 算法框架/工具
深入浅出卷积神经网络(CNN)的奥秘
【8月更文挑战第27天】本文将带领读者一探卷积神经网络(CNN)的神秘面纱,通过浅显易懂的语言和生动的比喻,揭示CNN在图像处理领域的威力。我们将从CNN的基本构成入手,逐步深入到其工作原理,并展示如何用简单的Python代码实现一个基础的CNN模型。无论你是深度学习的初学者还是希望巩固理解的从业者,这篇文章都将是你不可错过的精彩之旅。
|
2月前
|
机器学习/深度学习 计算机视觉 异构计算
【YOLOv8改进 - Backbone主干】ShuffleNet V2:卷积神经网络(CNN)架构
【YOLOv8改进 - Backbone主干】ShuffleNet V2:卷积神经网络(CNN)架构
|
8天前
|
机器学习/深度学习 计算机视觉
卷积神经网络(CNN)的不同层
【8月更文挑战第23天】
30 3
|
14天前
|
机器学习/深度学习 人工智能 自然语言处理
卷积神经网络(CNN):视觉识别的革命先锋
卷积神经网络(CNN)作为人工智能领域的一颗璀璨明珠,在计算机视觉中发挥着核心作用。CNN的发展历程展现了从生物学灵感到技术创新的转变,历经LeNet-5至AlexNet、VGGNet、ResNet等里程碑式的进步。其独特结构包括卷积层、池化层及全连接层,能够层层递进地提取特征并作出决策。CNN不仅在图像分类、目标检测等领域表现卓越,还在人脸识别、医学影像分析等方面展现出巨大潜力。尽管存在局限性,如对序列数据处理能力有限及解释性问题,但通过引入注意力机制、自监督学习等方法,CNN将持续演进,引领人工智能技术走向更加精彩的未来。
70 2
|
2月前
|
机器学习/深度学习 数据采集 监控
基于CNN卷积神经网络的步态识别matlab仿真,数据库采用CASIA库
**核心程序**: 完整版代码附中文注释,确保清晰理解。 **理论概述**: 利用CNN从视频中学习步态时空特征。 **系统框架**: 1. 数据预处理 2. CNN特征提取 3. 构建CNN模型 4. 训练与优化 5. 识别测试 **CNN原理**: 卷积、池化、激活功能强大特征学习。 **CASIA数据库**: 高质量数据集促进模型鲁棒性。 **结论**: CNN驱动的步态识别展现高精度,潜力巨大,适用于监控和安全领域。
下一篇
云函数