TensorFlow——CNN卷积神经网络处理Mnist数据集

简介: CNN卷积神经网络处理Mnist数据集CNN模型结构:输入层:Mnist数据集(28*28)第一层卷积:感受视野5*5,步长为1,卷积核:32个第一层池化:池化视野2*2,步长为2第二层卷积:感...
CNN卷积神经网络处理Mnist数据集

CNN模型结构:


输入层 Mnist 数据集( 28*28
第一层卷积 :感受视野5*5,步长为1,卷积核:32个
第一层池化 :池化视野2*2,步长为2
第二层卷积 :感受视野5*5,步长为1,卷积核:64个
第二层池化 :池化视野2*2,步长为2
全连接层 :设置1024个神经元
输出层 :0~9十个数字类别


代码实现:
import tensorflow as tf
#Tensorflow提供了一个类来处理MNIST数据
from tensorflow.examples.tutorials.mnist import input_data
import time

#载入数据集
mnist=input_data.read_data_sets('MNIST_data',one_hot=True)
#设置批次的大小
batch_size=100
#计算一共有多少个批次
n_batch=mnist.train.num_examples//batch_size

#定义初始化权值函数
def weight_variable(shape):
    initial=tf.truncated_normal(shape,stddev=0.1)
    return tf.Variable(initial)
#定义初始化偏置函数
def bias_variable(shape):
    initial=tf.constant(0.1,shape=shape)
    return tf.Variable(initial)
#卷积层
def conv2d(input,filter):
    return tf.nn.conv2d(input,filter,strides=[1,1,1,1],padding='SAME')
#池化层
def max_pool_2x2(value):
    return tf.nn.max_pool(value,ksize=[1,2,2,1],strides=[1,2,2,1],padding='SAME')


#输入层
#定义两个placeholder
x=tf.placeholder(tf.float32,[None,784]) #28*28
y=tf.placeholder(tf.float32,[None,10])
#改变x的格式转为4维的向量[batch,in_hight,in_width,in_channels]
x_image=tf.reshape(x,[-1,28,28,1])


#卷积、激励、池化操作
#初始化第一个卷积层的权值和偏置
W_conv1=weight_variable([5,5,1,32]) #5*5的采样窗口,32个卷积核从1个平面抽取特征
b_conv1=bias_variable([32]) #每一个卷积核一个偏置值
#把x_image和权值向量进行卷积,再加上偏置值,然后应用于relu激活函数
h_conv1=tf.nn.relu(conv2d(x_image,W_conv1)+b_conv1)
h_pool1=max_pool_2x2(h_conv1)  #进行max_pooling 池化层

#初始化第二个卷积层的权值和偏置
W_conv2=weight_variable([5,5,32,64]) #5*5的采样窗口,64个卷积核从32个平面抽取特征
b_conv2=bias_variable([64])
#把第一个池化层结果和权值向量进行卷积,再加上偏置值,然后应用于relu激活函数
h_conv2=tf.nn.relu(conv2d(h_pool1,W_conv2)+b_conv2)
h_pool2=max_pool_2x2(h_conv2)  #池化层

#28*28的图片第一次卷积后还是28*28,第一次池化后变为14*14
#第二次卷积后为14*14,第二次池化后变为了7*7
#经过上面操作后得到64张7*7的平面


#全连接层
#初始化第一个全连接层的权值
W_fc1=weight_variable([7*7*64,1024])#经过池化层后有7*7*64个神经元,全连接层有1024个神经元
b_fc1 = bias_variable([1024])#1024个节点
#把池化层2的输出扁平化为1维
h_pool2_flat = tf.reshape(h_pool2,[-1,7*7*64])
#求第一个全连接层的输出
h_fc1=tf.nn.relu(tf.matmul(h_pool2_flat,W_fc1)+b_fc1)

#keep_prob用来表示神经元的输出概率
keep_prob=tf.placeholder(tf.float32)
h_fc1_drop=tf.nn.dropout(h_fc1,keep_prob)

#初始化第二个全连接层
W_fc2=weight_variable([1024,10])
b_fc2=bias_variable([10])

#输出层
#计算输出
prediction=tf.nn.softmax(tf.matmul(h_fc1_drop,W_fc2)+b_fc2)

#交叉熵代价函数
cross_entropy=tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(labels=y,logits=prediction))
#使用AdamOptimizer进行优化
train_step=tf.train.AdamOptimizer(1e-4).minimize(cross_entropy)
#结果存放在一个布尔列表中(argmax函数返回一维张量中最大的值所在的位置)
correct_prediction=tf.equal(tf.argmax(prediction,1),tf.argmax(y,1))
#求准确率(tf.cast将布尔值转换为float型)
accuracy=tf.reduce_mean(tf.cast(correct_prediction,tf.float32))

#创建会话
with tf.Session() as sess:
    start_time=time.clock()
    sess.run(tf.global_variables_initializer()) #初始化变量
    for epoch in range(21):  #迭代21次(训练21次)
        for batch in range(n_batch):
            batch_xs,batch_ys=mnist.train.next_batch(batch_size)
            sess.run(train_step,feed_dict={x:batch_xs,y:batch_ys,keep_prob:0.7}) #进行迭代训练
        #测试数据计算出准确率
        acc=sess.run(accuracy,feed_dict={x:mnist.test.images,y:mnist.test.labels,keep_prob:1.0})
        print('Iter'+str(epoch)+',Testing Accuracy='+str(acc))
    end_time=time.clock()
    print('Running time:%s Second'%(end_time-start_time)) #输出运行时间

运行结果:


TensorFlow主要函数说明
1、卷积层
tf.nn.conv2d(input, filter, strides, padding, use_cudnn_on_gpu=None, data_format=None, name=None)
(1) data_format :表示输入的格式,有两种分别为:“ NHWC ”和“ NCHW ”,默认为“NHWC”
(2) input :输入是一个4维格式的(图像)数据,数据的 shape 由 data_format 决定:当 data_format 为“NHWC”输入数据的shape表示为 [batch, in_height, in_width, in_channels] ,分别表示训练时一个 batch的图片数量、图片高度、 图片宽度、 图像通道数 。当 data_format 为“NHWC”输入数据的shape表示为[batch, in_channels, in_height, in_width]
(3) filter :卷积核是一个4维格式的数据:shape表示为: [height,width,in_channels, out_channels] ,分别表示卷积核的高、宽、深度(与输入的in_channels应相同)、输出 feature map的个数(即卷积核的个数)。
(4) strides :表示步长:一个长度为4的一维列表,每个元素跟data_format互相对应,表示在data_format每一维上的移动步长。当输入的默认格式为:“NHWC”,则 strides = [batch , in_height , in_width, in_channels]。其中 batch 和 in_channels 要求一定为1,即只能在一个样本的一个通道上的特征图上进行移动,in_height , in_width表示卷积核在特征图的高度和宽度上移动的布长。
(5) padding :表示填充方式:“SAME”表示采用填充的方式,简单地理解为以0填充边缘,当stride为1时,输入和输出的维度相同;“VALID”表示采用不填充的方式,多余地进行丢弃。
对于卷积操作:



2、池化层
#池化层:
#Max pooling:取“池化视野”矩阵中的最大值
tf.nn.max_pool( value, ksize,strides,padding,data_format=’NHWC’,name=None)
#Average pooling:取“池化视野”矩阵中的平均值
tf.nn.avg_pool(value, ksize,strides,padding,data_format=’NHWC’,name=None)
参数说明:
(1) value :表示池化的输入:一个4维格式的数据,数据的 shape 由 data_format 决定,默认情况下shape 为 [batch, height, width, channels]
(2) ksize :表示池化窗口的大小:一个长度为4的一维列表,一般为 [1, height, width, 1] ,因不想在batch和channels上做池化,则将其值设为1。
(3) 其他参数与 tf.nn.cov2d 类型
对于池化操作:







相关文章
|
4天前
|
机器学习/深度学习 人工智能 网络架构
深入理解深度学习中的卷积神经网络(CNN)
深入理解深度学习中的卷积神经网络(CNN)
20 1
|
6天前
|
机器学习/深度学习 人工智能 算法框架/工具
深度学习中的卷积神经网络(CNN)入门
【10月更文挑战第41天】在人工智能的璀璨星空下,卷积神经网络(CNN)如一颗耀眼的新星,照亮了图像处理和视觉识别的路径。本文将深入浅出地介绍CNN的基本概念、核心结构和工作原理,同时提供代码示例,带领初学者轻松步入这一神秘而又充满无限可能的领域。
|
7天前
|
机器学习/深度学习 人工智能 算法
深入理解深度学习中的卷积神经网络(CNN)
深入理解深度学习中的卷积神经网络(CNN)
17 1
|
11天前
|
机器学习/深度学习 人工智能 算法框架/工具
深度学习中的卷积神经网络(CNN)及其在图像识别中的应用
【10月更文挑战第36天】探索卷积神经网络(CNN)的神秘面纱,揭示其在图像识别领域的威力。本文将带你了解CNN的核心概念,并通过实际代码示例,展示如何构建和训练一个简单的CNN模型。无论你是深度学习的初学者还是希望深化理解,这篇文章都将为你提供有价值的见解。
|
16天前
|
机器学习/深度学习 自然语言处理 前端开发
前端神经网络入门:Brain.js - 详细介绍和对比不同的实现 - CNN、RNN、DNN、FFNN -无需准备环境打开浏览器即可测试运行-支持WebGPU加速
本文介绍了如何使用 JavaScript 神经网络库 **Brain.js** 实现不同类型的神经网络,包括前馈神经网络(FFNN)、深度神经网络(DNN)和循环神经网络(RNN)。通过简单的示例和代码,帮助前端开发者快速入门并理解神经网络的基本概念。文章还对比了各类神经网络的特点和适用场景,并简要介绍了卷积神经网络(CNN)的替代方案。
|
6天前
|
机器学习/深度学习 自然语言处理
深入理解深度学习中的卷积神经网络(CNN)
深入理解深度学习中的卷积神经网络(CNN)
24 0
|
12天前
|
机器学习/深度学习 人工智能 自动驾驶
深入解析深度学习中的卷积神经网络(CNN)
深入解析深度学习中的卷积神经网络(CNN)
29 0
|
1月前
|
机器学习/深度学习 人工智能 算法框架/工具
深度学习中的卷积神经网络(CNN)及其在图像识别中的应用
【10月更文挑战第7天】本文将深入探讨卷积神经网络(CNN)的基本原理,以及它如何在图像识别领域中大放异彩。我们将从CNN的核心组件出发,逐步解析其工作原理,并通过一个实际的代码示例,展示如何利用Python和深度学习框架实现一个简单的图像分类模型。文章旨在为初学者提供一个清晰的入门路径,同时为有经验的开发者提供一些深入理解的视角。
|
13天前
|
机器学习/深度学习 计算机视觉 网络架构
为什么卷积现在不火了:CNN研究热度降温的深层原因分析
纵观近年的顶会论文和研究热点,我们不得不承认一个现实:CNN相关的研究论文正在减少,曾经的"主角"似乎正逐渐淡出研究者的视野。
46 11
为什么卷积现在不火了:CNN研究热度降温的深层原因分析
|
27天前
|
机器学习/深度学习 人工智能 自动驾驶
深度学习中的卷积神经网络(CNN)及其应用
【10月更文挑战第21天】本文旨在深入探讨深度学习领域的核心组成部分——卷积神经网络(CNN)。通过分析CNN的基本结构、工作原理以及在图像识别、语音处理等领域的广泛应用,我们不仅能够理解其背后的技术原理,还能把握其在现实世界问题解决中的强大能力。文章将用浅显的语言和生动的例子带领读者一步步走进CNN的世界,揭示这一技术如何改变我们的生活和工作方式。

热门文章

最新文章