hbase 学习(十六)系统架构图

本文涉及的产品
注册配置 MSE Nacos/ZooKeeper,118元/月
服务治理 MSE Sentinel/OpenSergo,Agent数量 不受限
云原生网关 MSE Higress,422元/月
简介: 这篇文章是我专门在网上弄下来的,算是hbase部分的终极篇吧,我的服务端的源码系列也要基于这个顺序来开展。

HBase 系统架构图

b2f05cd78a9f4895e265f4e77e38b6ecdf264267

组成部件说明
Client:  
使用HBase RPC机制与HMaster和HRegionServer进行通信   
Client与HMaster进行通信进行管理类操作   
Client与HRegionServer进行数据读写类操作   
Zookeeper:  
Zookeeper Quorum存储-ROOT-表地址、HMaster地址   
HRegionServer把自己以Ephedral方式注册到Zookeeper中,HMaster随时感知各个HRegionServer的健康状况   
Zookeeper避免HMaster单点问题   
HMaster:  
HMaster没有单点问题,HBase中可以启动多个HMaster,通过Zookeeper的Master Election机制保证总有一个Master在运行   
主要负责Table和Region的管理工作:   
1 管理用户对表的增删改查操作   
2 管理HRegionServer的负载均衡,调整Region分布   
3 Region Split后,负责新Region的分布   
4 在HRegionServer停机后,负责失效HRegionServer上Region迁移   
HRegionServer:  
HBase中最核心的模块,主要负责响应用户I/O请求,向HDFS文件系统中读写数据

14a22fcd2c6e7f71b0671210603801602bf62b2b

HRegionServer管理一些列HRegion对象;  
每个HRegion对应Table中一个Region,HRegion由多个HStore组成; 
每个HStore对应Table中一个Column Family的存储;   
Column Family就是一个集中的存储单元,故将具有相同IO特性的Column放在一个Column Family会更高效

HStore:  
HBase存储的核心。由MemStore和StoreFile组成。   
MemStore是Sorted Memory Buffer。用户写入数据的流程:

2ef04f764ac40b753132f05511980956d2b55b58

Client写入 -> 存入MemStore,一直到MemStore满 -> Flush成一个StoreFile,直至增长到一定阈值 -> 触发Compact合并操作 -> 多个StoreFile合并成一个StoreFile,同时进行版本合并和数据删除 -> 当StoreFiles Compact后,逐步形成越来越大的StoreFile -> 单个StoreFile大小超过一定阈值后,触发Split操作,把当前Region Split成2个Region,Region会下线,新Split出的2个孩子Region会被HMaster分配到相应的HRegionServer上,使得原先1个Region的压力得以分流到2个Region上。
由此过程可知,HBase只是增加数据,有所得更新和删除操作,都是在Compact阶段做的,所以,用户写操作只需要进入到内存即可立即返回,从而保证I/O高性能。

HLog  
引入HLog原因:   
在分布式系统环境中,无法避免系统出错或者宕机,一旦HRegionServer意外退出,MemStore中的内存数据就会丢失,引入HLog就是防止这种情况   
工作机制:   
每个HRegionServer中都会有一个HLog对象,HLog是一个实现Write Ahead Log的类,每次用户操作写入Memstore的同时,也会写一份数据到HLog文件,HLog文件定期会滚动出新,并删除旧的文件(已持久化到StoreFile中的数据)。当HRegionServer意外终止后,HMaster会通过Zookeeper感知,HMaster首先处理遗留的HLog文件,将不同region的log数据拆分,分别放到相应region目录下,然后再将失效的region重新分配,领取到这些region的HRegionServer在Load Region的过程中,会发现有历史HLog需要处理,因此会Replay HLog中的数据到MemStore中,然后flush到StoreFiles,完成数据恢复。

HBase存储格式  
HBase中的所有数据文件都存储在Hadoop HDFS文件系统上,格式主要有两种:   
1 HFile HBase中KeyValue数据的存储格式,HFile是Hadoop的二进制格式文件,实际上StoreFile就是对HFile做了轻量级包装,即StoreFile底层就是HFile   
2 HLog File,HBase中WAL(Write Ahead Log) 的存储格式,物理上是Hadoop的Sequence File

HFile

600684185b9f1bb962bbbece81ff8b08e3ff10f5

图片解释:  
HFile文件不定长,长度固定的块只有两个:Trailer和FileInfo   
Trailer中指针指向其他数据块的起始点   
File Info中记录了文件的一些Meta信息,例如:AVG_KEY_LEN, AVG_VALUE_LEN, LAST_KEY, COMPARATOR, MAX_SEQ_ID_KEY等   
Data Index和Meta Index块记录了每个Data块和Meta块的起始点   
Data Block是HBase I/O的基本单元,为了提高效率,HRegionServer中有基于LRU的Block Cache机制   
每个Data块的大小可以在创建一个Table的时候通过参数指定,大号的Block有利于顺序Scan,小号Block利于随机查询   
每个Data块除了开头的Magic以外就是一个个KeyValue对拼接而成, Magic内容就是一些随机数字,目的是防止数据损坏

HFile里面的每个KeyValue对就是一个简单的byte数组。这个byte数组里面包含了很多项,并且有固定的结构。

bd53edce4aa252bc9997a1e4879bc0d1308c6160

KeyLength和ValueLength:两个固定的长度,分别代表Key和Value的长度  
Key部分:Row Length是固定长度的数值,表示RowKey的长度,Row 就是RowKey   
Column Family Length是固定长度的数值,表示Family的长度   
接着就是Column Family,再接着是Qualifier,然后是两个固定长度的数值,表示Time Stamp和Key Type(Put/Delete)   
Value部分没有这么复杂的结构,就是纯粹的二进制数据

HLog File

ec07324214aa2093c02d62991fd47b28c202fb63

HLog文件就是一个普通的Hadoop Sequence File,Sequence File 的Key是HLogKey对象,HLogKey中记录了写入数据的归属信息,除了table和region名字外,同时还包括 sequence number和timestamp,timestamp是“写入时间”,sequence number的起始值为0,或者是最近一次存入文件系统中sequence number。  
HLog Sequece File的Value是HBase的KeyValue对象,即对应HFile中的KeyValue

结束语:这篇文章是我专门在网上弄下来的,算是hbase部分的终极篇吧,我的服务端的源码系列也要基于这个顺序来开展。

相关实践学习
lindorm多模间数据无缝流转
展现了Lindorm多模融合能力——用kafka API写入,无缝流转在各引擎内进行数据存储和计算的实验。
云数据库HBase版使用教程
  相关的阿里云产品:云数据库 HBase 版 面向大数据领域的一站式NoSQL服务,100%兼容开源HBase并深度扩展,支持海量数据下的实时存储、高并发吞吐、轻SQL分析、全文检索、时序时空查询等能力,是风控、推荐、广告、物联网、车联网、Feeds流、数据大屏等场景首选数据库,是为淘宝、支付宝、菜鸟等众多阿里核心业务提供关键支撑的数据库。 了解产品详情: https://cn.aliyun.com/product/hbase   ------------------------------------------------------------------------- 阿里云数据库体验:数据库上云实战 开发者云会免费提供一台带自建MySQL的源数据库 ECS 实例和一台目标数据库 RDS实例。跟着指引,您可以一步步实现将ECS自建数据库迁移到目标数据库RDS。 点击下方链接,领取免费ECS&RDS资源,30分钟完成数据库上云实战!https://developer.aliyun.com/adc/scenario/51eefbd1894e42f6bb9acacadd3f9121?spm=a2c6h.13788135.J_3257954370.9.4ba85f24utseFl
目录
相关文章
|
4月前
|
存储 分布式数据库 数据库
Hbase学习二:Hbase数据特点和架构特点
Hbase学习二:Hbase数据特点和架构特点
84 0
|
1月前
|
存储 大数据 关系型数据库
HBase系列学习:基础知识
HBase系列学习:基础知识
HBase系列学习:基础知识
|
13天前
|
存储 缓存 监控
【赵渝强老师】HBase的体系架构
本文介绍了HBase的体系架构,包括HMaster、RegionServer和ZooKeeper的主要功能。HMaster负责Region的分配和管理,RegionServer处理数据的读写操作,ZooKeeper维护集群状态并协调分布式系统的运行。文章还详细解释了Region、WAL预写日志、Block Cache读缓存和MemStore写缓存的作用。
|
1月前
|
存储 监控 分布式数据库
百亿级存储架构: ElasticSearch+HBase 海量存储架构与实现
本文介绍了百亿级数据存储架构的设计与实现,重点探讨了ElasticSearch和HBase的结合使用。通过ElasticSearch实现快速检索,HBase实现海量数据存储,解决了大规模数据的高效存储与查询问题。文章详细讲解了数据统一接入、元数据管理、数据一致性及平台监控等关键模块的设计思路和技术细节,帮助读者理解和掌握构建高性能数据存储系统的方法。
百亿级存储架构: ElasticSearch+HBase 海量存储架构与实现
|
1月前
|
存储 分布式计算 Hadoop
Hadoop-33 HBase 初识简介 项目简介 整体架构 HMaster HRegionServer Region
Hadoop-33 HBase 初识简介 项目简介 整体架构 HMaster HRegionServer Region
53 2
|
2月前
|
设计模式 架构师 Java
Java开发工程师转架构师需要学习什么
Java开发工程师转型为架构师需掌握多项技能:精通Java及框架、数据库与分布式系统;熟悉设计模式与架构模式;积累项目经验;提升沟通与领导力;持续学习新技术;培养系统设计与抽象能力;了解中间件及开发工具;并注重个人特质与职业发展。具体路径应结合个人目标与实际情况制定。
68 18
|
2月前
x86体系架构学习
x86体系架构学习
|
3月前
|
机器学习/深度学习 算法 网络架构
神经网络架构殊途同归?ICML 2024论文:模型不同,但学习内容相同
【8月更文挑战第3天】《神经语言模型的缩放定律》由OpenAI研究人员完成并在ICML 2024发表。研究揭示了模型性能与大小、数据集及计算资源间的幂律关系,表明增大任一资源均可预测地提升性能。此外,论文指出模型宽度与深度对性能影响较小,较大模型在更多数据上训练能更好泛化,且能高效利用计算资源。研究提供了训练策略建议,对于神经语言模型优化意义重大,但也存在局限性,需进一步探索。论文链接:[https://arxiv.org/abs/2001.08361]。
48 1
|
4月前
|
大数据 分布式数据库 Hbase
Hbase学习三:Hbase常用命令总结
Hbase学习三:Hbase常用命令总结
677 0
|
5月前
|
存储 SQL 分布式计算
技术心得记录:深入学习HBase架构原理
技术心得记录:深入学习HBase架构原理
下一篇
无影云桌面