gensim函数库的Word2Vec的参数说明

简介:

用gensim函数库训练Word2Vec模型有很多配置参数。这里对gensim文档的Word2Vec函数的参数说明进行翻译,以便不时之需。

class gensim.models.word2vec.Word2Vec(sentences=None,size=100,alpha=0.025,window=5, min_count=5, max_vocab_size=None, sample=0.001,seed=1, workers=3,min_alpha=0.0001, sg=0, hs=0, negative=5, cbow_mean=1, hashfxn=,iter=5,null_word=0, trim_rule=None, sorted_vocab=1, batch_words=10000)

参数:

· sentences:可以是一个·ist,对于大语料集,建议使用BrownCorpus,Text8Corpus或·ineSentence构建。
· sg: 用于设置训练算法,默认为0,对应CBOW算法;sg=1则采用skip-gram算法。
· size:是指特征向量的维度,默认为100。大的size需要更多的训练数据,但是效果会更好. 推荐值为几十到几百。
· window:表示当前词与预测词在一个句子中的最大距离是多少
· alpha: 是学习速率
· seed:用于随机数发生器。与初始化词向量有关。
· min_count: 可以对字典做截断. 词频少于min_count次数的单词会被丢弃掉, 默认值为5
· max_vocab_size: 设置词向量构建期间的RAM限制。如果所有独立单词个数超过这个,则就消除掉其中最不频繁的一个。每一千万个单词需要大约1GB的RAM。设置成None则没有限制。
· sample: 高频词汇的随机降采样的配置阈值,默认为1e-3,范围是(0,1e-5)
· workers参数控制训练的并行数。
· hs: 如果为1则会采用hierarchica·softmax技巧。如果设置为0(defau·t),则negative sampling会被使用。
· negative: 如果>0,则会采用negativesamp·ing,用于设置多少个noise words
· cbow_mean: 如果为0,则采用上下文词向量的和,如果为1(defau·t)则采用均值。只有使用CBOW的时候才起作用。
· hashfxn: hash函数来初始化权重。默认使用python的hash函数
· iter: 迭代次数,默认为5
· trim_rule: 用于设置词汇表的整理规则,指定那些单词要留下,哪些要被删除。可以设置为None(min_count会被使用)或者一个接受()并返回RU·E_DISCARD,uti·s.RU·E_KEEP或者uti·s.RU·E_DEFAU·T的函数。
· sorted_vocab: 如果为1(defau·t),则在分配word index 的时候会先对单词基于频率降序排序。
· batch_words:每一批的传递给线程的单词的数量,默认为10000

目录
相关文章
|
2月前
|
机器学习/深度学习 数据采集 自然语言处理
如何使用 Word2Vec 模型进行情感分析?
【10月更文挑战第5天】如何使用 Word2Vec 模型进行情感分析?
|
3月前
|
机器学习/深度学习 自然语言处理 Python
|
自然语言处理 数据可视化 数据处理
基于gensim实现word2vec模型(附案例实战)
基于gensim实现word2vec模型(附案例实战)
973 1
基于gensim实现word2vec模型(附案例实战)
|
Windows
如何将 Tex 转化为 Word 文件
如何将 Tex 转化为 Word 文件
656 0
|
机器学习/深度学习 存储 数据采集
词向量word2vec(图学习参考资料1)
词向量word2vec(图学习参考资料1)
|
自然语言处理 Python
自然语言处理=======python利用word2vec实现计算词语相似度【gensim实现】
自然语言处理=======python利用word2vec实现计算词语相似度【gensim实现】
380 0
自然语言处理=======python利用word2vec实现计算词语相似度【gensim实现】
|
自然语言处理 算法 Python
Gensim实现Word2Vec的Skip-Gram模型
gensim是一个开源的Python库,用于便捷高效地提取文档中的语义话题。它用于处理原始的、非结构化的电子文本(“纯文本”),gensim中的一些算法,如 Latent Semantic Analysis(潜在语义分析)、 Latent Dirichlet Allocation(潜在Dirichlet分布)、Random Projections(随机预测)通过检查训练文档中的共现实体来挖掘语义结构。
296 0
|
机器学习/深度学习 自然语言处理 算法
NLP之word2vec:word2vec简介、安装、使用方法之详细攻略
NLP之word2vec:word2vec简介、安装、使用方法之详细攻略
NLP之word2vec:word2vec简介、安装、使用方法之详细攻略
|
数据挖掘 计算机视觉
ML之sklearn:sklearn的make_pipeline函数、RobustScaler函数、KFold函数、cross_val_score函数的代码解释、使用方法之详细攻略(二)
ML之sklearn:sklearn的make_pipeline函数、RobustScaler函数、KFold函数、cross_val_score函数的代码解释、使用方法之详细攻略
|
机器学习/深度学习 人工智能 自然语言处理
手把手教你NumPy来实现Word2vec
Word2Vec被认为是自然语言处理(NLP)领域中最大、最新的突破之一。
616 0