Python能用来做什么?以下是Python的三大主要用途

简介:

如果你想学Python,或者你刚开始学习Python,那么你可能会问:“我能用Python做什么?”

这个问题不好回答,因为Python有很多用途。

但是随着时间,我发现有Python主要有以下三大主要应用:

· Web开发

· 数据科学
包括机器学习、数据分析和数据可视化

· 脚本

让我们来依次介绍。

一、Web开发

Django和Flask等基于Python的Web框架最近在Web开发中非常流行。

这些Web框架可以帮助你用Python编写服务器端代码(后端代码)。这是在你的额服务器上运行的代码,而不是运行在用户设备和浏览器的代码(前端代码)。

为什么需要Web框架

因为用Web框架可以更容易地构建通用后端逻辑。这包括将不同的URL映射到Python代码块,处理数据库以及生成用户在浏览器中看到的HTML文件。

应该使用哪种Python Web框架

Django和Flask是最流行的两种Python Web框架。如果你刚刚入门,我建议使用其中一种。

Django和Flask有什么区别

Gareth Dwyer 关于这个问题有一篇出色的文章,在这里我引用几段:

主要区别

Flask:能够实现简单、灵活和细致的控制。并能让你自己决定实现方式。

Django:提供了全面的体验:你可以获得管理面板、数据库接口、ORM(对象关系映射)以及开箱即用的应用程序和项目的目录结构。

如何选择

Flask:如果你关注的是经验和学习的机会,或者你想更多地控制使用哪些组件,比如你想使用哪些数据库以及如何与其进行交互。

Django:如果你关注最终产品,或者你正在研究一个简单的应用,比如新闻网站、网店或博客,并且你希望有单一实现的方式。

换句话说,如果你是初学者,Flask可能是更好的选择,因为它要掌握的组件更少。此外,如果你想要更多的定制,那就选Flask。

根据我的数据工程师朋友Jonathan T Ho的说法,由于Flask 的灵活性,在创建REST API时,Flask 比Django 更适合。

另一方面,如果你想直接构建一些东西,Django可能会让你更快实现。

二、数据科学

数据科学,这里包括机器学习,数据分析和数据可视化。

机器学习是什么

假设你想开发一个能够自动检测图片内容的程序。给出图1,你希望程序识别这是一只狗。

image

给出图2,希望程序能识别这是一张桌子。

image

你可能会说,我可以写一些代码来做到这点。例如,如果图片中有很多浅棕色像素,那么可以识别是狗。

或者可以检测图片中的边缘,如果有很多直的边缘,那么就是桌子。

但这种方法很快就不好用了。如果图片中的狗不是棕色毛的怎么办?如果图片只显示桌子的圆形部分怎么办?

这里就需要用到机器学习了。

机器学习通过实现算法,该算法能够自动检测输入中的模式。

例如,你将1000张狗的图片和1000张桌子的图片输入给机器学习算法,让它掌握狗和桌子间的区别。那么当你给出新的图片让它识别是狗还是桌子时,它就能够进行判断。

这有点类似孩子学习新事物的方式。孩子是如何学习认知狗或桌子的呢?就是通过大量的例子。

你不会明确告诉孩子:“如果某个毛茸茸的东西有浅棕色的毛发,那么就可能是狗。”

你会说,“这是狗,这也是狗。而这是桌子,那个也是桌子。“

机器学习算法的方式大致相同。

我们可以将相同的想法应用于:

· 推荐系统
(比如YouTube,亚马逊和Netflix)
· 人脸识别
· 语音识别

以及其他应用。

你听过的热门机器学习算法包括:

· 神经网络
· 深度学习
· 支持向量机
· 随机森林

你可以使用上述任何算法来解决前面提到的图片标签问题。

将Python用于机器学习

有一些热门的机器学习库和Python框架。其中两个最热门的是scikit-learn和TensorFlow。

· scikit-learn带有一些内置的热门机器学习算法。

· TensorFlow是一个低级库,能让你创建自定义机器学习算法。

如果你刚开始进行机器学习项目,我会建议你先从scikit-learn开始。如果你开始遇到效率问题,那么可以使用TensorFlow。

数据分析和数据可视化

假设你在一家在线销售产品的公司工作。作为数据分析师,你会绘制这样的条形图。

image


从这张图中可以看到在某个周日,男性用户购买了400多件产品,女性用户购买了350件产品。

作为数据分析师,对此你会提出一些可能的解释。明显的解释是,该产品在男性用户中更受欢迎。另一种是样本量太小,而这种差异是偶然的。还可能呢是由于某种原因,男性往往在周日才购买该产品。

为了理解哪种解释是正确的,你可以绘制另一个图。

image

不止看周日的数据,还要看到一周的数据。从这张图表中可以看出,在不同的日子里这种差异比较一致。

从这个分析中你会得出结论:这种产品在男性中比在女性中更受欢迎。

但如果你看到像这样的图表呢?

image

那么,怎么解释周日的差异呢?

你可能会说,也许出于某种原因男性只在周日才会更多地购买这款产品。或许这只是巧合。

我在谷歌和微软工作时所做的数据分析工作与这个例子非常相似,只是更复杂一些。在谷歌时我使用Python进行分析,而我在微软使用JavaScript。

在这两家公司我都使用SQL从数据库中提取数据。然后,我用Python和Matplotlib(在谷歌)或JavaScript和D3.js(在微软)来可视化和分析这些数据。

使用Python进行数据分析/可视化

进行数据可视化时,Matplotlib是非常热门的库。

Matplotlib很棒,因为:

· 容易上手

· seaborn等库是基于它的,学习Matplotlib可以帮助你以后学习其他库。

如何用Python学习数据分析/可视化

你首先应该了解数据分析和可视化的基础知识。在学习了数据分析和可视化的基础知识之后,学习统计学基础知识也将会很有帮助。

三、脚本

什么是脚本?

脚本通常是指编写能够自动执行简单任务的小程序。

我曾经在日本的一家小型创业公司工作,公司有邮件支持系统,这用来回复客户通过邮件发送给我们的问题。

在那儿工作时,我的任务是计算包含关键字的邮件数量,以便分析我们收到的电子邮件。这可以手动完成,但我写了一个简单的脚本来自动执行此任务。

当时我们使用了Ruby,但对于这类任务Python也是不错的选择。Python适合这类任务,因为它语法简单,易于编写,而且进行测试也很快。

其他用途

嵌入式应用

我不是这方面的专家,但我知道Python可以与Rasberry Pi一起用,在硬件爱好者中很流行。

游戏开发

你可以用PyGame来开发游戏,但这并不是最受欢迎的游戏引擎。你可以用它来开发业余爱好项目,但如果你对游戏开发很认真,建议不要选它。

我建议使用Unity的C#,这是最受欢迎的游戏引擎之一。它能让你为许多平台开发游戏,包括Mac、Windows、iOS和Android。

桌面应用

你可以用Python的Tkinter,但这并不是最热门的选择。Java,C#和C ++等语言似乎更受欢迎。

最近,一些公司也开始使用JavaScript来开发桌面应用程序。例如,Slack的桌面应用是Electron构建的。它能让你用JavaScript构建桌面应用程序。

就个人而言,如果我要开发桌面应用,我会选择使用JavaScript。它能让你重新使用网络版本的一些代码。

当然,我并不是桌面应用的专家,所以如果你有不同的看法,评论中告诉我。

Python 3还是Python 2

我会推荐Python 3,因为它更新而且更受欢迎。

后端代码与前端代码的区别

假设你想开发类似Instagram的产品,那么你需要为想要支持类型的设备创建前端代码。

你可能会用到:

· 面向iOS端的Swift
· 面向Android的Java
· 面向Web浏览器的JavaScript

每组代码将在每种类型的设备上运行。这类代码将决定应用的布局样式,点击按键的样式等。

但是,您还需要存储用户信息和照片的功能。你要将它们存储在服务器上,而不仅仅存储在用户的设备上,以便每个用户的关注者都可以查看其照片。

这时需要用到后端代码/服务器端代码。你需要编写后端代码来执行以下操作:

· 记录关注情况
· 压缩照片,从而不占用太多存储空间
· 在发现功能中向每个用户推荐照片和新帐户

这是后端代码和前端代码之间的区别。

顺便说一下,Python不是编写后端代码的唯一选择,还有基于JavaScript的Node.js等选择。

原文发布时间为:2018-06-30
本文作者:YK Sugi
本文来自云栖社区合作伙伴“ CDA数据分析师”,了解相关信息可以关注“ CDA数据分析师

相关文章
|
4月前
|
数据采集 机器学习/深度学习 人工智能
Python简直是万能的,这5大主要用途你一定要知道!
Python简直是万能的,这5大主要用途你一定要知道!
82 0
|
4月前
|
数据可视化 数据挖掘 API
请解释Python中的Seaborn库以及它的主要用途。
请解释Python中的Seaborn库以及它的主要用途。
145 0
|
4月前
|
存储 索引 Python
请解释Python中的NumPy库以及它的主要用途。
【2月更文挑战第27天】【2月更文挑战第97篇】请解释Python中的NumPy库以及它的主要用途。
167 0
|
4月前
|
机器学习/深度学习 数据采集 算法
请解释Python中的Sklearn库以及它的主要用途。
Sklearn是Python的机器学习库,提供数据预处理、特征选择、分类回归、聚类、模型评估和参数调优等工具。包含监督和无监督学习算法,如SVM、决策树、K-means等,并提供样例数据集便于实践。它是进行机器学习项目的重要资源。
48 1
|
4月前
|
XML 数据采集 自然语言处理
请解释Python中的BeautifulSoup库以及它的主要用途。
BeautifulSoup是Python的HTML/XML解析库,用于数据提取和网页抓取。它提供树形结构解析文档,支持查找、访问和修改元素。主要用途包括网页抓取、数据清洗、自动化测试、内容生成、网站开发及与其他库集成,如Requests和Scrapy。适用于各种数据处理场景。
90 1
|
4月前
|
XML 数据采集 自然语言处理
请解释Python中的BeautifulSoup库以及它的主要用途。
请解释Python中的BeautifulSoup库以及它的主要用途。
123 0
|
4月前
|
数据可视化 前端开发 Linux
请解释Python中的Matplotlib库以及它的主要用途。
【2月更文挑战第27天】【2月更文挑战第99篇】请解释Python中的Matplotlib库以及它的主要用途。
43 0
|
Web App开发 Linux 程序员
|
1天前
|
存储 数据采集 人工智能
探索Python编程之美——从基础到进阶
【9月更文挑战第9天】本文是一篇深入浅出的技术分享文章,旨在引导读者从零基础开始掌握Python编程。我们将通过生动的实例和代码示例,探讨Python的基本语法、数据结构、函数、模块以及面向对象编程等核心概念。无论你是初学者还是有一定经验的开发者,都能在这篇文章中找到有价值的内容。让我们一起开启Python编程之旅吧!
16 11
|
2天前
|
Python
探索Python编程的奥秘:打造你的第一个程序
【9月更文挑战第8天】本文将带你进入Python编程的世界,通过一个有趣的项目——制作一个简单的猜数字游戏,让你快速入门。我们不仅会分享代码编写的步骤,还会讲解每一行代码的含义和作用,确保即使是编程新手也能跟上节奏。文章末尾附有完整代码,方便读者实践和学习。
19 12