python常用框架

简介: 整理出15个最受欢迎的Python开源框架,这些框架包括事件I/O,OLAP,Web开发,高性能网络通信,测试,爬虫等。
  • Django: Python Web应用开发框架

Django 应该是最出名的Python框架,GAE甚至Erlang都有框架受它影响。Django是走大而全的方向,它最出名的是其全自动化的管理后台:只需要使用起ORM,做简单的对象定义,它就能自动生成数据库结构、以及全功能的管理后台。在Restful API项目中,强大调理的API管理能力,爽的不要不要的。

  • Diesel:基于Greenlet的事件I/O框架

Diesel提供一个整洁的API来编写网络客户端和服务器。支持TCP和UDP。

  • Flask:一个用Python编写的轻量级Web应用框架

Flask是一个使用Python编写的轻量级Web应用框架。基于Werkzeug WSGI工具箱和Jinja2
模板引擎。Flask也被称为“microframework”,因为它使用简单的核心,用extension增加其他功能。Flask没有默认使用的数
据库、窗体验证工具。

  • Cubes:轻量级Python OLAP框架

Cubes是一个轻量级Python框架,包含OLAP、多维数据分析和浏览聚合数据(aggregated data)等工具。

  • Kartograph.py:创造矢量地图的轻量级Python框架

Kartograph是一个Python库,用来为ESRI生成SVG地图。Kartograph.py目前仍处于beta阶段,你可以在virtualenv环境下来测试。

  • Pulsar:Python的事件驱动并发框架

Pulsar是一个事件驱动的并发框架,有了pulsar,你可以写出在不同进程或线程中运行一个或多个活动的异步服务器。

  • Web2py:全栈式Web框架

Web2py是一个为Python语言提供的全功能Web应用框架,旨在敏捷快速的开发Web应用,具有快速、安全以及可移植的数据库驱动的应用,兼容Google App Engine。

  • Falcon:构建云API和网络应用后端的高性能Python框架

Falcon是一个构建云API的高性能Python框架,它鼓励使用REST架构风格,尽可能以最少的力气做最多的事情。

  • Dpark:Python版的Spark

DPark是Spark的Python克隆,是一个Python实现的分布式计算框架,可以非常方便地实现大规模数据处理和迭代计算。DPark由豆瓣实现,目前豆瓣内部的绝大多数数据分析都使用DPark完成,正日趋完善。

  • Buildbot:基于Python的持续集成测试框架

Buildbot是一个开源框架,可以自动化软件构建、测试和发布等过程。每当代码有改变,服务器要求不同平台上的客户端立即进行代码构建和测试,收集并报告不同平台的构建和测试结果。

  • Zerorpc:基于ZeroMQ的高性能分布式RPC框架

Zerorpc是一个基于ZeroMQ和MessagePack开发的远程过程调用协议(RPC)实现。和 Zerorpc 一起使用的 Service API 被称为 zeroservice。Zerorpc 可以通过编程或命令行方式调用。

  • Bottle: 微型Python Web框架

Bottle是一个简单高效的遵循WSGI的微型python Web框架。说微型,是因为它只有一个文件,除Python标准库外,它不依赖于任何第三方模块。

  • Tornado:异步非阻塞IO的Python Web框架

Tornado的全称是Torado Web Server,从名字上看就可知道它可以用作Web服务器,但同时它也是一个Python Web的开发框架。最初是在FriendFeed公司的网站上使用,FaceBook收购了之后便开源了出来。

  • webpy: 轻量级的Python Web框架

webpy的设计理念力求精简(Keep it simple and powerful),源码很简短,只提供一个框架所必须的东西,不依赖大量的第三方模块,它没有URL路由、没有模板也没有数据库的访问。

  • Scrapy:Python的爬虫框架

Scrapy是一个使用Python编写的,轻量级的,简单轻巧,并且使用起来非常的方便。

目录
相关文章
|
2月前
|
缓存 自然语言处理 数据库
构建高效Python Web应用:异步编程与Tornado框架
【5月更文挑战第30天】在追求高性能Web应用开发的时代,异步编程已成为提升响应速度和处理并发请求的关键手段。本文将深入探讨Python世界中的异步编程技术,特别是Tornado框架如何利用非阻塞I/O和事件循环机制来优化Web服务的性能。我们将剖析Tornado的核心组件,并通过实例演示如何构建一个高效的Web服务。
|
24天前
|
关系型数据库 MySQL 数据库
如何使用Python的Flask框架来构建一个简单的Web应用
如何使用Python的Flask框架来构建一个简单的Web应用
39 0
|
9天前
|
JSON 数据格式 Python
Flask实现内部接口----pycharm安装及新建,location代表着文件路径,下面是Python的环境,Flask是由Python开发的框架,Python文件接口ython通过GET发送
Flask实现内部接口----pycharm安装及新建,location代表着文件路径,下面是Python的环境,Flask是由Python开发的框架,Python文件接口ython通过GET发送
|
1月前
|
存储 数据管理 测试技术
构建Python构建自动化测试框架(原理与实践)
当谈到软件质量保证时,自动化测试是一个不可或缺的步骤。Python作为一种简单易学的编程语言,具有丰富的测试框架和库,使得构建自动化测试框架变得相对简单。本文将介绍如何使用Python构建自动化测试框架,包括选择合适的测试框架、编写测试用例、执行测试和生成报告等方面。
构建Python构建自动化测试框架(原理与实践)
|
22天前
|
缓存 前端开发 API
了解python中几个主流的网络框架
【6月更文挑战第21天】探索Python Web几个流行框架,了解各框架特性以适应不同场景需求。
41 1
|
3天前
|
数据采集 前端开发 测试技术
【Python】已解决:(最新版selenium框架元素定位报错)NameError: name ‘By’ is not defined
【Python】已解决:(最新版selenium框架元素定位报错)NameError: name ‘By’ is not defined
10 0
|
25天前
|
存储 数据挖掘 索引
Python streamlit框架开发数据分析网站并免费部署
使用Python的Streamlit框架,开发了一个在线数据分析工具,替代Excel查看设备温度CSV数据。通过pandas读取数据,matplotlib绘制图表。程序处理CSV,提取所需列,计算最大最小平均值,用户可多选查看特定数据。[GitHub](https://github.com/yigedaigua/MGHB)上有完整代码,应用已部署至Streamlit Cloud。
|
1月前
|
分布式计算 负载均衡 并行计算
Python 分布式计算框架 PP (Parallel Python):集群模式下的实践探索
该文介绍了使用Parallel Python (PP) 在两台物理机上构建分布式计算集群的经验。PP是一个轻量级框架,旨在简化Python代码在多处理器系统和集群中的并行执行。文中通过设置子节点的IP、端口和密钥启动PP服务器,并在主节点创建PP实例进行负载均衡。实验使用官方的质数和计算示例,显示PP在集群模式下能有效利用多台机器的多核CPU,实现计算效率的显著提升。未来,作者计划进一步研究PP在更复杂任务和大规模集群中的应用潜力。
141 4
|
1月前
|
数据采集 存储 中间件
Scrapy,作为一款强大的Python网络爬虫框架,凭借其高效、灵活、易扩展的特性,深受开发者的喜爱
【6月更文挑战第10天】Scrapy是Python的高效爬虫框架,以其异步处理、多线程及中间件机制提升爬取效率。它提供丰富组件和API,支持灵活的数据抓取、清洗、存储,可扩展到各种数据库。通过自定义组件,Scrapy能适应动态网页和应对反爬策略,同时与数据分析库集成进行复杂分析。但需注意遵守法律法规和道德规范,以合法合规的方式进行爬虫开发。随着技术发展,Scrapy在数据收集领域将持续发挥关键作用。
67 4
|
1月前
|
IDE 测试技术 持续交付
Python作为一种简洁、易读且功能强大的编程语言,其自动化测试和单元测试框架的丰富性和易用性为开发者提供了极大的便利
【6月更文挑战第10天】本文探讨了Python自动化测试与单元测试框架在提升代码质量和效率中的作用。Selenium、Appium和pytest是常用的自动化测试框架,分别支持Web和移动应用的测试。unittest是Python的标准单元测试框架,提供断言方法和测试组织结构。通过制定测试计划、编写高质量测试用例、持续集成与测试、以及有效利用测试报告,开发者能提高代码质量和开发效率。
35 1