Spark修炼之道(高级篇)——Spark源码阅读:第七节 resourceOffers方法与launchTasks方法解析

本文涉及的产品
全局流量管理 GTM,标准版 1个月
公共DNS(含HTTPDNS解析),每月1000万次HTTP解析
云解析 DNS,旗舰版 1个月
简介: 在上一节中,我们提到Task提交通过makeOffers提交到Executor上 // Make fake resource offers on just one executor private def makeOffers(executorId: String) { // Filter out executors under killin

在上一节中,我们提到Task提交通过makeOffers提交到Executor上

    // Make fake resource offers on just one executor
    private def makeOffers(executorId: String) {
      // Filter out executors under killing
      if (!executorsPendingToRemove.contains(executorId)) {
        val executorData = executorDataMap(executorId)
        val workOffers = Seq(
          new WorkerOffer(executorId, executorData.executorHost, executorData.freeCores))
        launchTasks(scheduler.resourceOffers(workOffers))
      }
    }

上面的代码依赖于两个重要方法,它们分别是TaskSchedulerImpl resourceOffers方法及CoarseGrainedSchedulerBackend的launchTasks方法

//TaskSchedulerImpl resourceOffers方法
 /**
   * Called by cluster manager to offer resources on slaves. We respond by asking our active task
   * sets for tasks in order of priority. We fill each node with tasks in a round-robin manner so
   * that tasks are balanced across the cluster.
   */
  def resourceOffers(offers: Seq[WorkerOffer]): Seq[Seq[TaskDescription]] = synchronized {
    // Mark each slave as alive and remember its hostname
    // Also track if new executor is added
    // 处理新的executor加入
    var newExecAvail = false
    for (o <- offers) {
      executorIdToHost(o.executorId) = o.host
      activeExecutorIds += o.executorId
      if (!executorsByHost.contains(o.host)) {
        executorsByHost(o.host) = new HashSet[String]()
        executorAdded(o.executorId, o.host)
        newExecAvail = true
      }
      for (rack <- getRackForHost(o.host)) {
        hostsByRack.getOrElseUpdate(rack, new HashSet[String]()) += o.host
      }
    }

    // Randomly shuffle offers to avoid always placing tasks on the same set of workers.
    //随机打散,使Task均匀分配各Worker节点上
    val shuffledOffers = Random.shuffle(offers)
    // Build a list of tasks to assign to each worker.
    val tasks = shuffledOffers.map(o => new ArrayBuffer[TaskDescription](o.cores))
    val availableCpus = shuffledOffers.map(o => o.cores).toArray

    //根据调度策略获取ArrayBuffer[TaskSetManager]
    val sortedTaskSets = rootPool.getSortedTaskSetQueue
    for (taskSet <- sortedTaskSets) {
      logDebug("parentName: %s, name: %s, runningTasks: %s".format(
        taskSet.parent.name, taskSet.name, taskSet.runningTasks))
      if (newExecAvail) {
        taskSet.executorAdded()
      }
    }

    // Take each TaskSet in our scheduling order, and then offer it each node in increasing order
    // of locality levels so that it gets a chance to launch local tasks on all of them.
    // NOTE: the preferredLocality order: PROCESS_LOCAL, NODE_LOCAL, NO_PREF, RACK_LOCAL, ANY
    //按就近原则进行Task调度
    var launchedTask = false
    for (taskSet <- sortedTaskSets; maxLocality <- taskSet.myLocalityLevels) {
      do {
        launchedTask = resourceOfferSingleTaskSet(
            taskSet, maxLocality, shuffledOffers, availableCpus, tasks)
      } while (launchedTask)
    }

    if (tasks.size > 0) {
      hasLaunchedTask = true
    }
    return tasks
  }

调用完resourceOffers方法后,再调用launchTasks方法,最终在Worker节点上启动任务的运行

//CoarseGrainedSchedulerBackend中的launchTasks方法
 // Launch tasks returned by a set of resource offers
    private def launchTasks(tasks: Seq[Seq[TaskDescription]]) {
      for (task <- tasks.flatten) {
        val serializedTask = ser.serialize(task)
        //序列化后的任何不能超过设定的大小
        if (serializedTask.limit >= akkaFrameSize - AkkaUtils.reservedSizeBytes) {
          scheduler.taskIdToTaskSetManager.get(task.taskId).foreach { taskSetMgr =>
            try {
              var msg = "Serialized task %s:%d was %d bytes, which exceeds max allowed: " +
                "spark.akka.frameSize (%d bytes) - reserved (%d bytes). Consider increasing " +
                "spark.akka.frameSize or using broadcast variables for large values."
              msg = msg.format(task.taskId, task.index, serializedTask.limit, akkaFrameSize,
                AkkaUtils.reservedSizeBytes)
              taskSetMgr.abort(msg)
            } catch {
              case e: Exception => logError("Exception in error callback", e)
            }
          }
        }
        else {
          val executorData = executorDataMap(task.executorId)
          executorData.freeCores -= scheduler.CPUS_PER_TASK
          //Worker节点上的CoarseGrainedExecutorBackend对象将接受LaunchTask消息,在Worker节点的Executor上启动Task的执行
          executorData.executorEndpoint.send(LaunchTask(new SerializableBuffer(serializedTask)))
        }
      }
    }
目录
相关文章
|
10天前
|
监控 网络协议 Java
Tomcat源码解析】整体架构组成及核心组件
Tomcat,原名Catalina,是一款优雅轻盈的Web服务器,自4.x版本起扩展了JSP、EL等功能,超越了单纯的Servlet容器范畴。Servlet是Sun公司为Java编程Web应用制定的规范,Tomcat作为Servlet容器,负责构建Request与Response对象,并执行业务逻辑。
Tomcat源码解析】整体架构组成及核心组件
|
22天前
|
机器学习/深度学习 人工智能 自然语言处理
【人工智能】Foxmail邮箱在人工智能领域的应用方法及代码解析
Foxmail邮箱作为一款流行的邮件客户端软件,主要用于个人和企业的邮件收发、管理等功能。虽然它与人工智能(AI)技术有着潜在的融合点,但直接关于Foxmail邮箱在人工智能方面的应用代码并不是常规的讨论内容,因为邮箱客户端本身并不直接包含复杂的AI算法或代码。
134 58
|
11天前
|
vr&ar
简单易懂的 全景图高清下载方法以及原理简要解析(支持下载建E、720yun、酷雷曼、景站、酷家乐、百度街景原图)
这篇文章介绍了一种简单易懂的全景图高清下载方法,使用在线网站全景管家,支持下载包括建E、720yun、酷雷曼等多个平台的全景图原图,并简要解析了全景图的原理和制作方法。
简单易懂的 全景图高清下载方法以及原理简要解析(支持下载建E、720yun、酷雷曼、景站、酷家乐、百度街景原图)
|
8天前
|
项目管理 敏捷开发 开发框架
敏捷与瀑布的对决:解析Xamarin项目管理中如何运用敏捷方法提升开发效率并应对市场变化
【8月更文挑战第31天】在数字化时代,项目管理对软件开发至关重要,尤其是在跨平台框架 Xamarin 中。本文《Xamarin 项目管理:敏捷方法的应用》通过对比传统瀑布方法与敏捷方法,揭示敏捷在 Xamarin 项目中的优势。瀑布方法按线性顺序推进,适用于需求固定的小型项目;而敏捷方法如 Scrum 则强调迭代和增量开发,更适合需求多变、竞争激烈的环境。通过详细分析两种方法在 Xamarin 项目中的实际应用,本文展示了敏捷方法如何提高灵活性、适应性和开发效率,使其成为 Xamarin 项目成功的利器。
25 1
|
12天前
|
监控 安全 iOS开发
|
17天前
|
测试技术 Python
python自动化测试中装饰器@ddt与@data源码深入解析
综上所述,使用 `@ddt`和 `@data`可以大大简化写作测试用例的过程,让我们能专注于测试逻辑的本身,而无需编写重复的测试方法。通过讲解了 `@ddt`和 `@data`源码的关键部分,我们可以更深入地理解其背后的工作原理。
17 1
|
20天前
|
域名解析 运维 监控
网络故障排查的常用工具与方法:技术深度解析
【8月更文挑战第20天】网络故障排查是一项复杂而重要的工作,需要网络管理员具备扎实的网络知识、丰富的实践经验和灵活的问题解决能力。通过掌握常用工具和方法,遵循科学的排查流程,可以显著提高故障排查的效率和准确性。希望本文能为读者在网络故障排查方面提供有益的参考和启示。
|
28天前
|
开发者 Python
深入解析Python `httpx`源码,探索现代HTTP客户端的秘密!
深入解析Python `httpx`源码,探索现代HTTP客户端的秘密!
60 1
|
8天前
|
安全 数据安全/隐私保护 架构师
用Vaadin打造坚不可摧的企业级应用:安全性考虑全解析
【8月更文挑战第31天】韩林是某金融科技公司的架构师,负责构建安全的企业级应用。在众多Web框架中,他选择了简化UI设计并内置多项安全特性的Vaadin。韩林在其技术博客中分享了使用Vaadin时的安全考虑与实现方法,包括数据加密、SSL/TLS保护、结合Spring Security的用户认证、XSS防护、CSRF防御及事务性UI更新机制。他强调,虽然Vaadin提供了丰富的安全功能,但还需根据具体需求进行调整和增强。通过合理设计,可以构建高效且安全的企业级Web应用。
19 0
|
9天前
|
前端开发 JavaScript 开发者
React生命周期方法完全指南:深入理解并高效应用每个阶段的钩子——从初始化到卸载的全方位解析
【8月更文挑战第31天】本文详细介绍了React组件生命周期方法,包括初始化、挂载、更新和卸载四个阶段的关键钩子。通过探讨每个阶段的方法,如`componentDidMount`和`componentWillUnmount`,帮助开发者在正确时机执行所需操作,提升应用性能。文章还提供了最佳实践,指导如何避免常见错误并充分利用最新钩子。
14 0

推荐镜像

更多