Spark修炼之道(高级篇)——Spark源码阅读:第十节 Standalone运行模式解析

本文涉及的产品
公共DNS(含HTTPDNS解析),每月1000万次HTTP解析
全局流量管理 GTM,标准版 1个月
云解析 DNS,旗舰版 1个月
简介: Spark Standalone采用的是Master/Slave架构,主要涉及到的类包括:类:org.apache.spark.deploy.master.Master说明:负责整个集群的资源调度及Application的管理。消息类型:接收Worker发送的消息1. RegisterWorker2. ExecutorStateChanged3. Work

Spark Standalone采用的是Master/Slave架构,主要涉及到的类包括:

类:org.apache.spark.deploy.master.Master
说明:负责整个集群的资源调度及Application的管理。
消息类型:
接收Worker发送的消息
1. RegisterWorker
2. ExecutorStateChanged
3. WorkerSchedulerStateResponse
4. Heartbeat

向Worker发送的消息
1. RegisteredWorker
2. RegisterWorkerFailed
3. ReconnectWorker
4. KillExecutor
5.LaunchExecutor
6.LaunchDriver
7.KillDriver
8.ApplicationFinished

向AppClient发送的消息
1. RegisteredApplication
2. ExecutorAdded
3. ExecutorUpdated
4. ApplicationRemoved
接收AppClient发送的消息
1. RegisterApplication
2. UnregisterApplication
3. MasterChangeAcknowledged
4. RequestExecutors
5. KillExecutors

向Driver Client发送的消息
1.SubmitDriverResponse
2.KillDriverResponse
3.DriverStatusResponse

接收Driver Client发送的消息
1.RequestSubmitDriver 
2.RequestKillDriver         
3.RequestDriverStatus
类org.apache.spark.deploy.worker.Worker
说明:向Master注册自己并启动CoarseGrainedExecutorBackend,在运行时启动Executor运行Task任务
消息类型:
向Master发送的消息
1. RegisterWorker
2. ExecutorStateChanged
3. WorkerSchedulerStateResponse
4. Heartbeat
接收Master发送的消息
1. RegisteredWorker
2. RegisterWorkerFailed
3. ReconnectWorker
4. KillExecutor
5.LaunchExecutor
6.LaunchDriver
7.KillDriver
8.ApplicationFinished
类org.apache.spark.deploy.client.AppClient.ClientEndpoint
说明:向Master注册并监控Application,请求或杀死Executors等
消息类型:
向Master发送的消息
1. RegisterApplication
2. UnregisterApplication
3. MasterChangeAcknowledged
4. RequestExecutors
5. KillExecutors
接收Master发送的消息
1. RegisteredApplication
2. ExecutorAdded
3. ExecutorUpdated
4. ApplicationRemoved
类:org.apache.spark.scheduler.cluster.DriverEndpoint
说明:运行时注册Executor并启动Task的运行并处理Executor发送来的状态更新等
消息类型:
向Executor发送的消息
1.LaunchTask
2.KillTask
3.RegisteredExecutor
4.RegisterExecutorFailed
接收Executor发送的消息
1.RegisterExecutor
2.StatusUpdate
类:org.apache.spark.deploy.ClientEndpoint 
说明:管理Driver包括提交Driver、Kill掉Driver及获取Driver状态信息
向Master发送的消息
1.RequestSubmitDriver 
2.RequestKillDriver         
3.RequestDriverStatus

接收Master 发送的消息
1.SubmitDriverResponse
2.KillDriverResponse
3.DriverStatusResponse

上面所有的类都继承自org.apache.spark.rpc.ThreadSafeRpcEndpoint,其底层实现目前都是通过AKKA来实现的,具体如下图所示:

这里写图片描述

各类之间的交互关系如下图所示:
这里写图片描述

1. AppClient与Master间的交互

SparkContext在创建时,会调用,createTaskScheduler方法创建相应的TaskScheduler及SchedulerBackend

 // Create and start the scheduler
    val (sched, ts) = SparkContext.createTaskScheduler(this, master)
    _schedulerBackend = sched
    _taskScheduler = ts
    _dagScheduler = new DAGScheduler(this)
    _heartbeatReceiver.ask[Boolean](TaskSchedulerIsSet)

    // start TaskScheduler after taskScheduler sets DAGScheduler reference in DAGScheduler‘s
    // constructor
    _taskScheduler.start()
Standalone运行模式创建的TaskScheduler及SchedulerBackend具体源码如下:

/**
   * Create a task scheduler based on a given master URL.
   * Return a 2-tuple of the scheduler backend and the task scheduler.
   */
  private def createTaskScheduler(
      sc: SparkContext,
      master: String): (SchedulerBackend, TaskScheduler) = {

   //省略其它非关键代码
   case SPARK_REGEX(sparkUrl) =>
        val scheduler = new TaskSchedulerImpl(sc)
        val masterUrls = sparkUrl.split(",").map("spark://" + _)
        val backend = new SparkDeploySchedulerBackend(scheduler, sc, masterUrls)
        scheduler.initialize(backend)
        (backend, scheduler)
    //省略其它非关键代码

}

创建完成TaskScheduler及SchedulerBackend后,调用TaskScheduler的start方法,启动SchedulerBackend(Standalone模式对应SparkDeploySchedulerBackend)

//TaskSchedulerImpl中的start方法 
override def start() {
    //调用SchedulerBackend的start方法 
    backend.start()
    //省略其它非关键代码
  }

对应SparkDeploySchedulerBackend中的start方法源码如下:

override def start() {
    super.start()

    //省略其它非关键代码
    //Application相关信息(包括应用程序名、executor运行内存等)
    val appDesc = new ApplicationDescription(sc.appName, maxCores, sc.executorMemory,
      command, appUIAddress, sc.eventLogDir, sc.eventLogCodec, coresPerExecutor)
    //创建AppClient,传入相应启动参数
    client = new AppClient(sc.env.rpcEnv, masters, appDesc, this, conf)
    client.start()
    waitForRegistration()
  }

AppClient类中的start方法原码如下:

//AppClient Start方法
  def start() {
    // Just launch an rpcEndpoint; it will call back into the listener.
    //ClientEndpoint,该ClientEndpoint为AppClient的内部类
    //它是AppClient的rpcEndpoint
    endpoint = rpcEnv.setupEndpoint("AppClient", new ClientEndpoint(rpcEnv))
  }
ClientEndpoint在启动时,会向Master注册Application

override def onStart(): Unit = {
      try {
        registerWithMaster(1)
      } catch {
        case e: Exception =>
          logWarning("Failed to connect to master", e)
          markDisconnected()
          stop()
      }
    }

registerWithMaster方法便是向Master注册Application,其源码如下:

/**
     * Register with all masters asynchronously. It will call `registerWithMaster` every
     * REGISTRATION_TIMEOUT_SECONDS seconds until exceeding REGISTRATION_RETRIES times.
     * Once we connect to a master successfully, all scheduling work and Futures will be cancelled.
     *
     * nthRetry means this is the nth attempt to register with master.
     */
    private def registerWithMaster(nthRetry: Int) {
      registerMasterFutures = tryRegisterAllMasters()
      //注册失败时重试
      registrationRetryTimer = registrationRetryThread.scheduleAtFixedRate(new Runnable {
        override def run(): Unit = {
          Utils.tryOrExit {
            if (registered) {
              registerMasterFutures.foreach(_.cancel(true))
              registerMasterThreadPool.shutdownNow()
            } else if (nthRetry >= REGISTRATION_RETRIES) {
              markDead("All masters are unresponsive! Giving up.")
            } else {
              registerMasterFutures.foreach(_.cancel(true))
              registerWithMaster(nthRetry + 1)
            }
          }
        }
      }, REGISTRATION_TIMEOUT_SECONDS, REGISTRATION_TIMEOUT_SECONDS, TimeUnit.SECONDS)
    }

向所有Masters注册,因为Master可能实现了高可靠(HA),例如ZooKeeper的HA方式,所以存在多个Master,但最终只有Active Master响应,具体源码如下:

 /**
     *  Register with all masters asynchronously and returns an array `Future`s for cancellation.
     */
    private def tryRegisterAllMasters(): Array[JFuture[_]] = {
      for (masterAddress <- masterRpcAddresses) yield {
        registerMasterThreadPool.submit(new Runnable {
          override def run(): Unit = try {
            if (registered) {
              return
            }
            logInfo("Connecting to master " + masterAddress.toSparkURL + "...")
            //获取Master rpcEndpoint
            val masterRef =
              rpcEnv.setupEndpointRef(Master.SYSTEM_NAME, masterAddress, Master.ENDPOINT_NAME)
            //向Master发送RegisterApplication信息            masterRef.send(RegisterApplication(appDescription, self))
          } catch {
            case ie: InterruptedException => // Cancelled
            case NonFatal(e) => logWarning(s"Failed to connect to master $masterAddress", e)
          }
        })
      }
    }

Master会接收来自AppClient的RegisterApplication消息,具体源码如下:

//org.apache.spark.deploy.master.Master.receive方法接受AppClient发送来的RegisterApplication消息
override def receive: PartialFunction[Any, Unit] = {

    case RegisterApplication(description, driver) => {
      // TODO Prevent repeated registrations from some driver
      if (state == RecoveryState.STANDBY) {
        // ignore, don‘t send response
      } else {
        logInfo("Registering app " + description.name)
        //创建ApplicationInfo
        val app = createApplication(description, driver)
        //注册Application
        registerApplication(app)
        logInfo("Registered app " + description.name + " with ID " + app.id)
        persistenceEngine.addApplication(app)
        //向AppClient发送RegisteredApplication消息
        driver.send(RegisteredApplication(app.id, self))
        schedule()
      }
    }

AppClient内部类ClientEndpoint接收Master发来的RegisteredApplication消息

 override def receive: PartialFunction[Any, Unit] = {
      case RegisteredApplication(appId_, masterRef) =>
        // FIXME How to handle the following cases?
        // 1. A master receives multiple registrations and sends back multiple
        // RegisteredApplications due to an unstable network.
        // 2. Receive multiple RegisteredApplication from different masters because the master is
        // changing.
        appId = appId_
        registered = true
        master = Some(masterRef)
        listener.connected(appId)
       //省略其它非关键代码
}

通过上述过程便完成Application的注册。其它交互信息如下

//------------------AppClient 向 Master  发送的消息------------------//

  //AppClient向Master注册Application
  case class RegisterApplication(appDescription: ApplicationDescription, driver: RpcEndpointRef)
    extends DeployMessage

 //AppClient向Master注销Application
  case class UnregisterApplication(appId: String)

 //Master从故障中恢复后,发送MasterChange消息给AppClient,AppClient接收到该消息后,更改保存的Master信息,然后发送MasterChangeAcknowledged给Master
  case class MasterChangeAcknowledged(appId: String)

//为Application的运行申请数量为requestedTotal的Executor
  case class RequestExecutors(appId: String, requestedTotal: Int)

//杀死Application对应的Executors
  case class KillExecutors(appId: String, executorIds: Seq[String])
//------------------Master  向 AppClient 发送的消息------------------//

  //向AppClient发送Application注册成功的消息
  case class RegisteredApplication(appId: String, master: RpcEndpointRef) extends DeployMessage

  // TODO(matei): replace hostPort with host
  //Worker启动了Executor后,发送该消息通知AppClient
  case class ExecutorAdded(id: Int, workerId: String, hostPort: String, cores: Int, memory: Int) {
    Utils.checkHostPort(hostPort, "Required hostport")
  }
   //Executor状态更新后,发送该消息通知AppClient
  case class ExecutorUpdated(id: Int, state: ExecutorState, message: Option[String],
    exitStatus: Option[Int])

  //Application成功运行或失败时,Master发送该消息给AppClient
  //AppClient接收该消息后,停止Application的运行
  case class ApplicationRemoved(message: String)

   // Master 发生变化时,会利用MasterChanged消息通知Worker及AppClient
  case class MasterChanged(master: RpcEndpointRef, masterWebUiUrl: String)

2. Master与Worker间的交互

这里只给出其基本的消息交互,后面有时间再来具体分析。

 //------------------Worker向Master发送的消息------------------//

  //向Master注册Worker,Master在完成Worker注册后,向Worker发送RegisteredWorker消息,此后便可接收来自Master的调度
  case class RegisterWorker(
      id: String,
      host: String,
      port: Int,
      worker: RpcEndpointRef,
      cores: Int,
      memory: Int,
      webUiPort: Int,
      publicAddress: String)
    extends DeployMessage {
    Utils.checkHost(host, "Required hostname")
    assert (port > 0)
  }

  //向Master汇报Executor的状态变化
  case class ExecutorStateChanged(
      appId: String,
      execId: Int,
      state: ExecutorState,
      message: Option[String],
      exitStatus: Option[Int])
    extends DeployMessage

  //向Master汇报Driver状态变化
  case class DriverStateChanged(
      driverId: String,
      state: DriverState,
      exception: Option[Exception])
    extends DeployMessage

  //Worker向Master汇报其运行的Executor及Driver信息
  case class WorkerSchedulerStateResponse(id: String, executors: List[ExecutorDescription],
     driverIds: Seq[String])

  //Worker向Master发送的心跳信息,主要向Master报活
  case class Heartbeat(workerId: String, worker: RpcEndpointRef) extends DeployMessage
 //------------------Master向Worker发送的消息------------------//

  //Worker发送RegisterWorker消息注册Worker,注册成功后Master回复RegisteredWorker消息给Worker
  case class RegisteredWorker(master: RpcEndpointRef, masterWebUiUrl: String) extends DeployMessage

  //Worker发送RegisterWorker消息注册Worker,注册失败后Master回复RegisterWorkerFailed消息给Worker
  case class RegisterWorkerFailed(message: String) extends DeployMessage

   //Worker心跳超时后,Master向Worker发送ReconnectWorker消息,通知Worker节点需要重新注册
  case class ReconnectWorker(masterUrl: String) extends DeployMessage

  //application运行完毕后,Master向Worker发送KillExecutor消息,Worker接收到消息后,删除对应execId的Executor
  case class KillExecutor(masterUrl: String, appId: String, execId: Int) extends DeployMessage
   //向Worker节点发送启动Executor消息
  case class LaunchExecutor(
      masterUrl: String,
      appId: String,
      execId: Int,
      appDesc: ApplicationDescription,
      cores: Int,
      memory: Int)
    extends DeployMessage

  //向Worker节点发送启动Driver消息
  case class LaunchDriver(driverId: String, driverDesc: DriverDescription) extends DeployMessage

  //杀死对应Driver
  case class KillDriver(driverId: String) extends DeployMessage

  case class ApplicationFinished(id: String)

3. Driver Client与 Master间的消息交互

Driver Client主要是管理Driver,包括向Master提交Driver、请求杀死Driver等,其源码位于org.apache.spark.deploy.client.scala源码文件当中,类名为:org.apache.spark.deploy.ClientEndpoint。要注意其与org.apache.spark.deploy.client.AppClient.ClientEndpoint类的本质不同。

 //------------------Driver Client间Master信息的交互------------------//

  //Driver Client向Master请求提交Driver
  case class RequestSubmitDriver(driverDescription: DriverDescription) extends DeployMessage
  //Master向Driver Client返回注册是否成功的消息
  case class SubmitDriverResponse(
      master: RpcEndpointRef, success: Boolean, driverId: Option[String], message: String)
    extends DeployMessage


  //Driver Client向Master请求Kill Driver
  case class RequestKillDriver(driverId: String) extends DeployMessage
  // Master回复Kill Driver是否成功
  case class KillDriverResponse(
      master: RpcEndpointRef, driverId: String, success: Boolean, message: String)
    extends DeployMessage


  //Driver Client向Master请求Driver状态
  case class RequestDriverStatus(driverId: String) extends DeployMessage
  //Master向Driver Client返回状态请求信息
  case class DriverStatusResponse(found: Boolean, state: Option[DriverState],
    workerId: Option[String], workerHostPort: Option[String], exception: Option[Exception])

4. Driver与Executor间的消息交互

//------------------Driver向Executor发送的消息------------------//
  //启动Task
  case class LaunchTask(data: SerializableBuffer) extends CoarseGrainedClusterMessage
  //杀死Task
  case class KillTask(taskId: Long, executor: String, interruptThread: Boolean)
    extends CoarseGrainedClusterMessage
 //Executor注册成功
case object RegisteredExecutor extends CoarseGrainedClusterMessage
 //Executor注册失败
case class RegisterExecutorFailed(message: String) extends CoarseGrainedClusterMessage



//------------------Executor向Driver发送的消息------------------//
 //向Driver注册Executor
 case class RegisterExecutor(
      executorId: String,
      executorRef: RpcEndpointRef,
      hostPort: String,
      cores: Int,
      logUrls: Map[String, String])
    extends CoarseGrainedClusterMessage {
    Utils.checkHostPort(hostPort, "Expected host port")
  }

 //向Driver汇报状态变化
 case class StatusUpdate(executorId: String, taskId: Long, state: TaskState,
    data: SerializableBuffer) extends CoarseGrainedClusterMessage

  object StatusUpdate {
    /** Alternate factory method that takes a ByteBuffer directly for the data field */
    def apply(executorId: String, taskId: Long, state: TaskState, data: ByteBuffer)
      : StatusUpdate = {
      StatusUpdate(executorId, taskId, state, new SerializableBuffer(data))
    }
  }

作者:周志湖
网名:摇摆少年梦

目录
相关文章
|
2月前
|
设计模式 监控 Java
解析Spring Cloud中的断路器模式原理
解析Spring Cloud中的断路器模式原理
|
3月前
|
程序员 数据库 微服务
长事务管理不再难:Saga模式全面解析
本文介绍了分布式事务中的Saga模式,它用于解决微服务架构下的事务管理问题。Saga通过一系列本地事务和补偿操作确保最终一致性,分为编排和协同两种模式。文章重点讲解了编排模式,其中 Saga 协调者负责事务的执行和失败后的补偿。Saga 模式适用于业务流程明确且需要严格补偿的场景,能有效管理长事务,但实现上可能增加复杂性,并存在一致性延迟。文章还讨论了其优缺点和适用场景,强调了在面对分布式事务挑战时,Saga 模式的价值和潜力。
283 6
|
3月前
|
设计模式 缓存 JavaScript
API设计模式:REST、GraphQL、gRPC与tRPC全面解析
API设计模式:REST、GraphQL、gRPC与tRPC全面解析
|
3月前
|
Prometheus 监控 关系型数据库
数据库同步革命:MySQL GTID模式下主从配置的全面解析
数据库同步革命:MySQL GTID模式下主从配置的全面解析
309 0
|
21天前
|
消息中间件 开发者
【RabbitMQ深度解析】Topic交换器与模式匹配:掌握消息路由的艺术!
【8月更文挑战第24天】在消息队列(MQ)体系中,交换器作为核心组件之一负责消息路由。特别是`topic`类型的交换器,它通过模式匹配实现消息的精准分发,适用于发布-订阅模式。不同于直接交换器和扇形交换器,`topic`交换器支持更复杂的路由策略,通过带有通配符(如 * 和 #)的模式字符串来定义队列与交换器间的绑定关系。
38 2
|
13天前
|
开发者 云计算 数据库
从桌面跃升至云端的华丽转身:深入解析如何运用WinForms与Azure的强大组合,解锁传统应用向现代化分布式系统演变的秘密,实现性能与安全性的双重飞跃——你不可不知的开发新模式
【8月更文挑战第31天】在数字化转型浪潮中,传统桌面应用面临新挑战。本文探讨如何融合Windows Forms(WinForms)与Microsoft Azure,助力应用向云端转型。通过Azure的虚拟机、容器及无服务器计算,可轻松解决性能瓶颈,满足全球用户需求。文中还提供了连接Azure数据库的示例代码,并介绍了集成Azure Storage和Functions的方法。尽管存在安全性、网络延迟及成本等问题,但合理设计架构可有效应对,帮助开发者构建高效可靠的现代应用。
14 0
|
13天前
|
开发者 iOS开发 C#
Uno Platform 入门超详细指南:从零开始教你打造兼容 Web、Windows、iOS 和 Android 的跨平台应用,轻松掌握 XAML 与 C# 开发技巧,快速上手示例代码助你迈出第一步
【8月更文挑战第31天】Uno Platform 是一个基于 Microsoft .NET 的开源框架,支持使用 C# 和 XAML 构建跨平台应用,适用于 Web(WebAssembly)、Windows、Linux、macOS、iOS 和 Android。它允许开发者共享几乎全部的业务逻辑和 UI 代码,同时保持原生性能。选择 Uno Platform 可以统一开发体验,减少代码重复,降低开发成本。安装时需先配置好 Visual Studio 或 Visual Studio for Mac,并通过 NuGet 或官网下载工具包。
22 0
|
13天前
|
前端开发 开发者 C#
深度解析 Uno Platform 中的 MVVM 模式:从理论到实践的全方位指南,助你轻松掌握通过 C# 与 XAML 构建高效可维护的跨平台应用秘籍
【8月更文挑战第31天】本文详细介绍如何在优秀的跨平台 UI 框架 Uno Platform 中实施 MVVM(Model-View-ViewModel)模式,通过一个简单的待办事项列表应用演示其实现过程。MVVM 模式有助于分离视图层与业务逻辑层,提升代码组织性、易测性和可维护性。Uno Platform 的数据绑定机制使视图与模型间的同步变得高效简便。文章通过构造 `TodoListViewModel` 类及其相关视图,展示了如何解耦视图与模型,实现动态数据绑定及命令处理,从而提高代码质量和开发效率。通过这一模式,开发者能更轻松地构建复杂的跨平台应用。
24 0
|
13天前
|
数据处理 开发者
深入解析Angular服务:构建可重用业务逻辑的最佳实践与模式——从基础创建到高级异步处理的全面指南
【8月更文挑战第31天】在Angular开发中,服务用于封装可重用的业务逻辑,有助于保持代码的DRY原则。本文详细介绍如何创建和使用服务,包括基础设置、逻辑封装及高级应用,如HTTP请求和异步数据处理,帮助你构建模块化、易维护的应用。通过示例展示,你将学会如何充分利用服务提升开发效率。
20 0
|
14天前
|
数据采集 弹性计算 供应链
阿里云服务器付费模式:按量付费、包年包月和抢占式实例全解析
阿里云服务器提供包年包月、按量付费与抢占式实例三种付费模式。包年包月为预付费,适合长期稳定使用,价格更优惠并支持备案。按量付费则为后付费模式,按小时结算,适合短期或访问量波动大的场景,但不支持备案。抢占式实例基于按量付费,价格更低(最多节省90%),适用于无状态应用,如临时测试或可弹性伸缩的Web服务,但存在被系统释放的风险,同样不支持备案。根据具体需求选择合适的付费模式能够有效降低成本并提高效率。
31 0

热门文章

最新文章

推荐镜像

更多