Spark修炼之道(进阶篇)——Spark入门到精通:第十六节 Spark Streaming与Kafka

简介: 作者:周志湖主要内容Spark Streaming与Kafka版的WordCount示例(一)Spark Streaming与Kafka版的WordCount示例(二)1. Spark Streaming与Kafka版本的WordCount示例 (一)启动kafka集群root@sparkslave02:/hadoopLearning/kafka_2

作者:周志湖

主要内容

  1. Spark Streaming与Kafka版的WordCount示例(一)
  2. Spark Streaming与Kafka版的WordCount示例(二)

1. Spark Streaming与Kafka版本的WordCount示例 (一)

  1. 启动kafka集群
root@sparkslave02:/hadoopLearning/kafka_2.10-0.8.2.1# bin/kafka-server-start.sh config/server.properties 
root@sparkslave01:/hadoopLearning/kafka_2.10-0.8.2.1# bin/kafka-server-start.sh config/server.properties 
root@sparkmaster:/hadoopLearning/kafka_2.10-0.8.2.1# bin/kafka-server-start.sh config/server.properties 

向kafka集群发送消息

root@sparkslave01:/hadoopLearning/kafka_2.10-0.8.2.1# bin/kafka-console-producer.sh --broker-list sparkslave01:9092 --sync --topic kafkatopictest
  1. 编写如下程序
import org.apache.kafka.clients.producer.{ProducerConfig, KafkaProducer, ProducerRecord}
import org.apache.log4j.{Level, Logger}

import org.apache.spark.streaming._
import org.apache.spark.streaming.kafka._
import org.apache.spark.{Logging, SparkConf}

object KafkaWordCount {
  def main(args: Array[String]) {
    if (args.length < 4) {
      System.err.println("Usage: KafkaWordCount <zkQuorum> <group> <topics> <numThreads>")
      System.exit(1)
    }
    StreamingExamples.setStreamingLogLevels()

    val Array(zkQuorum, group, topics, numThreads) = args
    val sparkConf = new SparkConf().setAppName("KafkaWordCount").setMaster("local[4]")
    val ssc = new StreamingContext(sparkConf, Seconds(2))
    ssc.checkpoint("checkpoint")

    val topicMap = topics.split(",").map((_, numThreads.toInt)).toMap
    //创建ReceiverInputDStream
    val lines = KafkaUtils.createStream(ssc, zkQuorum, group, topicMap).map(_._2)
    val words = lines.flatMap(_.split(" "))
    val wordCounts = words.map(x => (x, 1L))
      .reduceByKeyAndWindow(_ + _, _ - _, Minutes(10), Seconds(2), 2)
    wordCounts.print()

    ssc.start()
    ssc.awaitTermination()
  }
}

配置运行参数:
这里写图片描述
具体如下:

sparkmaster:2181  test-consumer-group kafkatopictest 1

sparkmaster:2181,zookeeper监听地址
test-consumer-group, consumer-group的名称,必须和$KAFKA_HOME/config/consumer.properties中的group.id的配置内容一致
kafkatopictest,topic名称
1,线程数

运行KafkaWordCount 后,在producer中输入下列内容

root@sparkslave01:/hadoopLearning/kafka_2.10-0.8.2.1# bin/kafka-console-producer.sh --broker-list sparkslave01:9092 --sync --topic kafkatopictest
[2015-11-04 03:25:39,666] WARN Property topic is not valid (kafka.utils.VerifiableProperties)
Spark
Spark TEST
TEST Spark Streaming

这里写图片描述

得到结果如下:
这里写图片描述

2. Spark Streaming与Kafka版本的WordCount示例(二)

前面的例子中,producer是通过kafka的脚本生成的,本例中将给出通过编写程序生成的producer

// 随机生成1-100间的数字
object KafkaWordCountProducer {

  def main(args: Array[String]) {
    if (args.length < 4) {
      System.err.println("Usage: KafkaWordCountProducer <metadataBrokerList> <topic> " +
        "<messagesPerSec> <wordsPerMessage>")
      System.exit(1)
    }

    val Array(brokers, topic, messagesPerSec, wordsPerMessage) = args

    // Zookeeper连接属性配置
    val props = new HashMap[String, Object]()
    props.put(ProducerConfig.BOOTSTRAP_SERVERS_CONFIG, brokers)
    props.put(ProducerConfig.VALUE_SERIALIZER_CLASS_CONFIG,
      "org.apache.kafka.common.serialization.StringSerializer")
    props.put(ProducerConfig.KEY_SERIALIZER_CLASS_CONFIG,
      "org.apache.kafka.common.serialization.StringSerializer")
    //创建KafkaProducer
    val producer = new KafkaProducer[String, String](props)

    // 向kafka集群发送消息
    while(true) {
      (1 to messagesPerSec.toInt).foreach { messageNum =>
        val str = (1 to wordsPerMessage.toInt).map(x => scala.util.Random.nextInt(10).toString)
          .mkString(" ")

        val message = new ProducerRecord[String, String](topic, null, str)
        producer.send(message)
      }

      Thread.sleep(1000)
    }
  }

}

KafkaWordCountProducer 运行参数设置如下:

sparkmaster:9092 kafkatopictest 5 8

sparkmaster:9092,broker-list
kafkatopictest,top名称
5表示每秒发多少条消息
8表示每条消息中有几个单词

先KafkaWordCountProducer,然后再运行KafkaWordCount ,得到的计算结果如下:
这里写图片描述

目录
相关文章
|
2月前
|
消息中间件 分布式计算 NoSQL
大数据-104 Spark Streaming Kafka Offset Scala实现Redis管理Offset并更新
大数据-104 Spark Streaming Kafka Offset Scala实现Redis管理Offset并更新
48 0
|
2月前
|
消息中间件 存储 分布式计算
大数据-103 Spark Streaming Kafka Offset管理详解 Scala自定义Offset
大数据-103 Spark Streaming Kafka Offset管理详解 Scala自定义Offset
104 0
|
1月前
|
分布式计算 流计算 Spark
【赵渝强老师】Spark Streaming中的DStream
本文介绍了Spark Streaming的核心概念DStream,即离散流。DStream通过时间间隔将连续的数据流转换为一系列不连续的RDD,再通过Transformation进行转换,实现流式数据的处理。文中以MyNetworkWordCount程序为例,展示了DStream生成RDD的过程,并附有视频讲解。
|
2月前
|
消息中间件 分布式计算 Kafka
大数据-102 Spark Streaming Kafka ReceiveApproach DirectApproach 附带Producer、DStream代码案例
大数据-102 Spark Streaming Kafka ReceiveApproach DirectApproach 附带Producer、DStream代码案例
61 0
|
2月前
|
SQL 分布式计算 大数据
大数据-101 Spark Streaming DStream转换 窗口操作状态 跟踪操作 附带多个案例(一)
大数据-101 Spark Streaming DStream转换 窗口操作状态 跟踪操作 附带多个案例(一)
56 0
|
分布式计算 Spark 流计算
SparkStreaming入门及例子
看书大概了解了下Streaming的原理,但是木有动过手啊。。。万事开头难啊,一个wordcount 2小时怎么都运行不出结果。是我太蠢了,好了言归正传。 SparkStreaming是一个批处理的流式计算框架,适合处理实时数据与历史数据混合处理的场景(比如,你用streaming将实时数据读入处理,再使用sparkSQL提取历史数据,与之关联处理)。
1075 0
|
1月前
|
分布式计算 大数据 Apache
ClickHouse与大数据生态集成:Spark & Flink 实战
【10月更文挑战第26天】在当今这个数据爆炸的时代,能够高效地处理和分析海量数据成为了企业和组织提升竞争力的关键。作为一款高性能的列式数据库系统,ClickHouse 在大数据分析领域展现出了卓越的能力。然而,为了充分利用ClickHouse的优势,将其与现有的大数据处理框架(如Apache Spark和Apache Flink)进行集成变得尤为重要。本文将从我个人的角度出发,探讨如何通过这些技术的结合,实现对大规模数据的实时处理和分析。
143 2
ClickHouse与大数据生态集成:Spark & Flink 实战
|
2月前
|
存储 分布式计算 算法
大数据-106 Spark Graph X 计算学习 案例:1图的基本计算、2连通图算法、3寻找相同的用户
大数据-106 Spark Graph X 计算学习 案例:1图的基本计算、2连通图算法、3寻找相同的用户
74 0
|
1月前
|
SQL 机器学习/深度学习 分布式计算
Spark快速上手:揭秘大数据处理的高效秘密,让你轻松应对海量数据
【10月更文挑战第25天】本文全面介绍了大数据处理框架 Spark,涵盖其基本概念、安装配置、编程模型及实际应用。Spark 是一个高效的分布式计算平台,支持批处理、实时流处理、SQL 查询和机器学习等任务。通过详细的技术综述和示例代码,帮助读者快速掌握 Spark 的核心技能。
95 6
|
1月前
|
存储 分布式计算 Hadoop
数据湖技术:Hadoop与Spark在大数据处理中的协同作用
【10月更文挑战第27天】在大数据时代,数据湖技术凭借其灵活性和成本效益成为企业存储和分析大规模异构数据的首选。Hadoop和Spark作为数据湖技术的核心组件,通过HDFS存储数据和Spark进行高效计算,实现了数据处理的优化。本文探讨了Hadoop与Spark的最佳实践,包括数据存储、处理、安全和可视化等方面,展示了它们在实际应用中的协同效应。
118 2