Spark修炼之道(进阶篇)——Spark入门到精通:第十节 Spark SQL案例实战(一)

简介: 作者:周志湖放假了,终于能抽出时间更新博客了…….1. 获取数据本文通过将github上的Spark项目git日志作为数据,对SparkSQL的内容进行详细介绍 数据获取命令如下:[root@master spark]# git log --pretty=format:'{"commit":"%H","author":"%an","author_e

作者:周志湖

放假了,终于能抽出时间更新博客了…….

1. 获取数据

本文通过将github上的Spark项目git日志作为数据,对SparkSQL的内容进行详细介绍
数据获取命令如下:

[root@master spark]# git log  --pretty=format:'{"commit":"%H","author":"%an","author_email":"%ae","date":"%ad","message":"%f"}' > sparktest.json

格式化日志内容输出如下:

[root@master spark]# head -1 sparktest.json
{"commit":"30b706b7b36482921ec04145a0121ca147984fa8","author":"Josh Rosen","author_email":"joshrosen@databricks.com","date":"Fri Nov 6 18:17:34 2015 -0800","message":"SPARK-11389-CORE-Add-support-for-off-heap-memory-to-MemoryManager"}

然后使用命令将sparktest.json文件上传到HDFS上


[root@master spark]#hadoop dfs -put sparktest.json /data/

2. 创建DataFrame

使用数据创建DataFrame

scala> val df = sqlContext.read.json("/data/sparktest.json")
16/02/05 09:59:56 INFO json.JSONRelation: Listing hdfs://ns1/data/sparktest.json on driver

查看其模式:

scala> df.printSchema()
root
 |-- author: string (nullable = true)
 |-- author_email: string (nullable = true)
 |-- commit: string (nullable = true)
 |-- date: string (nullable = true)
 |-- message: string (nullable = true)

3. DataFrame方法实战

(1)显式前两行数据

scala> df.show(2)

+----------------+--------------------+--------------------+--------------------+--------------------+
|          author|        author_email|              commit|                date|             message|
+----------------+--------------------+--------------------+--------------------+--------------------+
|      Josh Rosen|joshrosen@databri...|30b706b7b36482921...|Fri Nov 6 18:17:3...|SPARK-11389-CORE-...|
|Michael Armbrust|michael@databrick...|105732dcc6b651b97...|Fri Nov 6 17:22:3...|HOTFIX-Fix-python...|
+----------------+--------------------+--------------------+--------------------+--------------------+

(2)计算总提交次数


scala> df.count
res4: Long = 13507
下图给出的是我github上的commits次数,可以看到,其结束是一致的

这里写图片描述

(3)按提交次数进行降序排序

scala>df.groupBy("author").count.sort($"count".desc).show

+--------------------+-----+
|              author|count|
+--------------------+-----+
|       Matei Zaharia| 1590|
|         Reynold Xin| 1071|
|     Patrick Wendell|  857|
|       Tathagata Das|  416|
|          Josh Rosen|  348|
|  Mosharaf Chowdhury|  290|
|           Andrew Or|  287|
|       Xiangrui Meng|  285|
|          Davies Liu|  281|
|          Ankur Dave|  265|
|          Cheng Lian|  251|
|    Michael Armbrust|  243|
|             zsxwing|  200|
|           Sean Owen|  197|
|     Prashant Sharma|  186|
|  Joseph E. Gonzalez|  185|
|            Yin Huai|  177|
|Shivaram Venkatar...|  173|
|      Aaron Davidson|  164|
|      Marcelo Vanzin|  142|
+--------------------+-----+
only showing top 20 rows

4. DataFrame注册成临时表使用实战

使用下列语句将DataFrame注册成表

scala> val commitLog=df.registerTempTable("commitlog")

(1)显示前2行数据

scala> sqlContext.sql("SELECT * FROM commitlog").show(2)
+----------------+--------------------+--------------------+--------------------+--------------------+
|          author|        author_email|              commit|                date|             message|
+----------------+--------------------+--------------------+--------------------+--------------------+
|      Josh Rosen|joshrosen@databri...|30b706b7b36482921...|Fri Nov 6 18:17:3...|SPARK-11389-CORE-...|
|Michael Armbrust|michael@databrick...|105732dcc6b651b97...|Fri Nov 6 17:22:3...|HOTFIX-Fix-python...|
+----------------+--------------------+--------------------+--------------------+--------------------+

(2)计算总提交次数

scala> sqlContext.sql("SELECT count(*) as TotalCommitNumber  FROM commitlog").show
+-----------------+
|TotalCommitNumber|
+-----------------+
|            13507|
+-----------------+

(3)按提交次数进行降序排序

scala> sqlContext.sql("SELECT author,count(*) as CountNumber  FROM commitlog GROUP BY author ORDER BY CountNumber DESC").show

+--------------------+-----------+
|              author|CountNumber|
+--------------------+-----------+
|       Matei Zaharia|       1590|
|         Reynold Xin|       1071|
|     Patrick Wendell|        857|
|       Tathagata Das|        416|
|          Josh Rosen|        348|
|  Mosharaf Chowdhury|        290|
|           Andrew Or|        287|
|       Xiangrui Meng|        285|
|          Davies Liu|        281|
|          Ankur Dave|        265|
|          Cheng Lian|        251|
|    Michael Armbrust|        243|
|             zsxwing|        200|
|           Sean Owen|        197|
|     Prashant Sharma|        186|
|  Joseph E. Gonzalez|        185|
|            Yin Huai|        177|
|Shivaram Venkatar...|        173|
|      Aaron Davidson|        164|
|      Marcelo Vanzin|        142|
+--------------------+-----------+

更多复杂的玩法,大家可以自己去尝试,这里给出的只是DataFrame方法与临时表SQL语句的用法差异,以便于有整体的认知。

目录
相关文章
|
9天前
|
SQL 存储 数据处理
"SQL触发器实战大揭秘:一键解锁数据自动化校验与更新魔法,让数据库管理从此告别繁琐,精准高效不再是梦!"
【8月更文挑战第31天】在数据库管理中,确保数据准确性和一致性至关重要。SQL触发器能自动执行数据校验与更新,显著提升工作效率。本文通过一个员工信息表的例子,详细介绍了如何利用触发器自动设定和校验薪资,确保其符合业务规则。提供的示例代码展示了在插入新记录时如何自动检查并调整薪资,以满足最低标准。这不仅减轻了数据库管理员的负担,还提高了数据处理的准确性和效率。触发器虽强大,但也需谨慎使用,以避免复杂性和性能问题。
20 1
|
23天前
|
SQL 存储 关系型数据库
数据库SQL入门指南
数据库SQL入门指南
|
26天前
|
SQL 存储 分布式计算
|
5天前
|
SQL 安全 数据库
基于SQL Server事务日志的数据库恢复技术及实战代码详解
基于事务日志的数据库恢复技术是SQL Server中一个非常强大的功能,它能够帮助数据库管理员在数据丢失或损坏的情况下,有效地恢复数据。通过定期备份数据库和事务日志,并在需要时按照正确的步骤恢复,可以最大限度地减少数据丢失的风险。需要注意的是,恢复数据是一个需要谨慎操作的过程,建议在执行恢复操作之前,详细了解相关的操作步骤和注意事项,以确保数据的安全和完整。
13 0
|
8天前
|
Java 数据库连接 数据库
告别繁琐 SQL!Hibernate 入门指南带你轻松玩转 ORM,解锁高效数据库操作新姿势
【8月更文挑战第31天】Hibernate 是一款流行的 Java 持久层框架,简化了对象关系映射(ORM)过程,使开发者能以面向对象的方式进行数据持久化操作而无需直接编写 SQL 语句。本文提供 Hibernate 入门指南,介绍核心概念及示例代码,涵盖依赖引入、配置文件设置、实体类定义、工具类构建及基本 CRUD 操作。通过学习,你将掌握使用 Hibernate 简化数据持久化的技巧,为实际项目应用打下基础。
25 0
|
8天前
|
测试技术 Java
全面保障Struts 2应用质量:掌握单元测试与集成测试的关键策略
【8月更文挑战第31天】Struts 2 的测试策略结合了单元测试与集成测试。单元测试聚焦于单个组件(如 Action 类)的功能验证,常用 Mockito 模拟依赖项;集成测试则关注组件间的交互,利用 Cactus 等框架确保框架拦截器和 Action 映射等按预期工作。通过确保高测试覆盖率并定期更新测试用例,可以提升应用的整体稳定性和质量。
18 0
|
8天前
|
数据库 Java 监控
Struts 2 日志管理化身神秘魔法师,洞察应用运行乾坤,演绎奇幻篇章!
【8月更文挑战第31天】在软件开发中,了解应用运行状况至关重要。日志管理作为 Struts 2 应用的关键组件,记录着每个动作和决策,如同监控摄像头,帮助我们迅速定位问题、分析性能和使用情况,为优化提供依据。Struts 2 支持多种日志框架(如 Log4j、Logback),便于配置日志级别、格式和输出位置。通过在 Action 类中添加日志记录,我们能在开发过程中获取详细信息,及时发现并解决问题。合理配置日志不仅有助于调试,还能分析用户行为,提升应用性能和稳定性。
23 0
|
8天前
|
前端开发 Java JSON
Struts 2携手AngularJS与React:探索企业级后端与现代前端框架的完美融合之道
【8月更文挑战第31天】随着Web应用复杂性的提升,前端技术日新月异。AngularJS和React作为主流前端框架,凭借强大的数据绑定和组件化能力,显著提升了开发动态及交互式Web应用的效率。同时,Struts 2 以其出色的性能和丰富的功能,成为众多Java开发者构建企业级应用的首选后端框架。本文探讨了如何将 Struts 2 与 AngularJS 和 React 整合,以充分发挥前后端各自优势,构建更强大、灵活的 Web 应用。
18 0
|
9天前
|
SQL 数据采集 算法
【电商数据分析利器】SQL实战项目大揭秘:手把手教你构建用户行为分析系统,从数据建模到精准营销的全方位指南!
【8月更文挑战第31天】随着电商行业的快速发展,用户行为分析的重要性日益凸显。本实战项目将指导你使用 SQL 构建电商平台用户行为分析系统,涵盖数据建模、采集、处理与分析等环节。文章详细介绍了数据库设计、测试数据插入及多种行为分析方法,如购买频次统计、商品销售排名、用户活跃时间段分析和留存率计算,帮助电商企业深入了解用户行为并优化业务策略。通过这些步骤,你将掌握利用 SQL 进行大数据分析的关键技术。
20 0
|
9天前
|
SQL 安全 测试技术
【数据守护者必备】SQL数据备份与恢复策略全解析:从全量到日志备份,手把手教你确保企业信息万无一失的实战技巧!
【8月更文挑战第31天】数据库是企业核心业务数据的基石,为防止硬件故障、软件错误或人为失误导致的数据丢失,制定可靠的备份与恢复策略至关重要。本文通过一个在线购物平台的案例,详细介绍了使用 SQL Server 进行全量备份、差异备份及事务日志备份的方法,并演示了如何利用 SQL Server Agent 实现自动化备份任务。此外,还提供了数据恢复的具体步骤和测试建议,确保数据安全与业务连续性。
13 0