pandas库的数据类型运算

简介: pandas库的数据类型运算算数运算法则根据行列索引,补齐运算(不同索引不运算,行列索引相同才运算),默认产生浮点数补齐时默认填充NaN空值二维和一维,一维和0维之间采用广播运算(低维元素与每一个高维元素运算)...

pandas库的数据类型运算

算数运算法则

  • 根据行列索引,补齐运算(不同索引不运算,行列索引相同才运算),默认产生浮点数
  • 补齐时默认填充NaN空值
  • 二维和一维,一维和0维之间采用广播运算(低维元素与每一个高维元素运算)
  • 采用 +-*/符号的二元运算会产生新的对象
import pandas as pd
import numpy as np

a = pd.DataFrame(np.arange(12).reshape(3, 4))
a
0 1 2 3
0 0 1 2 3
1 4 5 6 7
2 8 9 10 11
b = pd.DataFrame(np.arange(20).reshape(4, 5))
b
0 1 2 3 4
0 0 1 2 3 4
1 5 6 7 8 9
2 10 11 12 13 14
3 15 16 17 18 19
# 维度相同, 行列内元素个数不同的运算, 自动补齐, 缺项NaN
a + b
0 1 2 3 4
0 0.0 2.0 4.0 6.0 NaN
1 9.0 11.0 13.0 15.0 NaN
2 18.0 20.0 22.0 24.0 NaN
3 NaN NaN NaN NaN NaN
a * b
0 1 2 3 4
0 0.0 1.0 4.0 9.0 NaN
1 20.0 30.0 42.0 56.0 NaN
2 80.0 99.0 120.0 143.0 NaN
3 NaN NaN NaN NaN NaN

除了使用+-*/,也可使用方法形式,好处是可以增加可选参数

  • .add(d,**argws) 类型间加法运算,可选参数
  • .sub(d,**argws) 类型间减法运算,可选参数
  • .mul(d,**argws) 类型间乘法运算,可选参数
  • .div(d,**argws) 类型间除法运算,可选参数
b.add(a,fill_value = 100) # 将a和b之间的缺失元素用100补齐并参加与运算
0 1 2 3 4
0 0.0 2.0 4.0 6.0 104.0
1 9.0 11.0 13.0 15.0 109.0
2 18.0 20.0 22.0 24.0 114.0
3 115.0 116.0 117.0 118.0 119.0
a.mul(b,fill_value = 0)
0 1 2 3 4
0 0.0 1.0 4.0 9.0 0.0
1 20.0 30.0 42.0 56.0 0.0
2 80.0 99.0 120.0 143.0 0.0
3 0.0 0.0 0.0 0.0 0.0

不同维度运算

b = pd.DataFrame(np.arange(20).reshape(4, 5))
b
0 1 2 3 4
0 0 1 2 3 4
1 5 6 7 8 9
2 10 11 12 13 14
3 15 16 17 18 19
c = pd.Series(np.arange(4))
c
0    0
1    1
2    2
3    3
dtype: int32
c - 10
0   -10
1    -9
2    -8
3    -7
dtype: int32
b - c # b的每一行都与c运算一遍, 二维和一维运算默认在轴1(行)发生
0 1 2 3 4
0 0.0 0.0 0.0 0.0 NaN
1 5.0 5.0 5.0 5.0 NaN
2 10.0 10.0 10.0 10.0 NaN
3 15.0 15.0 15.0 15.0 NaN
b.sub(c,axis=0) # 指定用 列 参与运算
0 1 2 3 4
0 0 1 2 3 4
1 4 5 6 7 8
2 8 9 10 11 12
3 12 13 14 15 16

比较运算法则

  • 比较运算只能比较相同索引的元素,不进行补齐(尺寸不同会报错)
  • 二维和一维/一维和零维间为广播运算
  • 采用>< >= <= – !=等符号进行的二元运算产生布尔对象
a = pd.DataFrame(np.arange(12).reshape(3, 4))
a
0 1 2 3
0 0 1 2 3
1 4 5 6 7
2 8 9 10 11
d = pd.DataFrame(np.arange(12, 0, -1).reshape(3, 4))
d
0 1 2 3
0 12 11 10 9
1 8 7 6 5
2 4 3 2 1
a > d # bool值表
0 1 2 3
0 False False False False
1 False False False True
2 True True True True
a == d
0 1 2 3
0 False False False False
1 False False True False
2 False False False False
b = pd.DataFrame(np.arange(12).reshape(3, 4))
c = pd.Series(np.arange(4))

a > c
0 1 2 3
0 False False False False
1 True True True True
2 True True True True
c > 0
0    False
1     True
2     True
3     True
dtype: bool
目录
相关文章
|
10天前
|
存储 SQL 算法
【源码解析】深入解析 pandas的Block 类中算术运算和重排实现
【源码解析】深入解析 pandas的Block 类中算术运算和重排实现
|
22天前
|
数据采集 SQL 数据处理
Python中的Pandas库:数据处理与分析的利器
Python中的Pandas库:数据处理与分析的利器
31 0
|
23天前
|
数据采集 数据可视化 数据处理
Python中的高效数据处理:Pandas库详解
Python中的高效数据处理:Pandas库详解
40 2
|
23天前
|
数据采集 SQL 数据可视化
使用Python和Pandas库进行数据分析的入门指南
使用Python和Pandas库进行数据分析的入门指南
79 0
|
25天前
|
数据采集 数据挖掘 Serverless
利用Python和Pandas库优化数据清洗流程
在数据分析项目中,数据清洗是至关重要的一步。传统的数据清洗方法往往繁琐且易出错。本文将介绍如何利用Python编程语言中的Pandas库,通过其强大的数据处理能力,实现高效、自动化的数据清洗流程。我们将探讨Pandas库在数据清洗中的应用,包括缺失值处理、重复值识别、数据类型转换等,并通过一个实际案例展示如何利用Pandas优化数据清洗流程,提升数据质量。
|
28天前
|
Python
python相关库的安装:pandas,numpy,matplotlib,statsmodels
python相关库的安装:pandas,numpy,matplotlib,statsmodels
|
30天前
|
数据采集 数据可视化 数据处理
利用Python和Pandas库实现高效的数据处理与分析
在大数据和人工智能时代,数据处理与分析已成为不可或缺的一环。Python作为一门强大的编程语言,结合Pandas库,为数据科学家和开发者提供了高效、灵活的数据处理工具。本文将介绍Pandas库的基本功能、优势,并通过实际案例展示如何使用Pandas进行数据清洗、转换、聚合等操作,以及如何利用Pandas进行数据可视化,旨在帮助读者深入理解并掌握Pandas在数据处理与分析中的应用。
|
30天前
|
架构师 数据挖掘 Python
最全pandas库(Python),2024年最新阿里云架构师面试
最全pandas库(Python),2024年最新阿里云架构师面试
最全pandas库(Python),2024年最新阿里云架构师面试
|
1月前
|
数据采集 数据可视化 数据挖掘
利用Python和Pandas库优化数据分析流程
在当今数据驱动的时代,数据分析已成为企业和个人决策的重要依据。Python作为一种强大且易于上手的编程语言,配合Pandas这一功能丰富的数据处理库,极大地简化了数据分析的流程。本文将探讨如何利用Python和Pandas库进行高效的数据清洗、转换、聚合以及可视化,从而优化数据分析的流程,提高数据分析的效率和准确性。
|
1月前
|
数据采集 数据可视化 数据挖掘
如何利用Python中的Pandas库进行数据分析和可视化
Python的Pandas库是一种功能强大的工具,可以用于数据分析和处理。本文将介绍如何使用Pandas库进行数据分析和可视化,包括数据导入、清洗、转换以及基本的统计分析和图表绘制。通过学习本文,读者将能够掌握利用Python中的Pandas库进行高效数据处理和可视化的技能。